cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005153 Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252
Offset: 1

Views

Author

Keywords

Comments

Equivalently, positive integers m such that every number k <= m is a sum of distinct divisors of m.
2^r is a member for all r as every number < = sigma(2^r) = 2^(r+1)-1 is a sum of a distinct subset of divisors {1, 2, 2^2, ..., 2^m}. - Amarnath Murthy, Apr 23 2004
Also, numbers m such that A030057(m) > m. This is a consequence of the following theorem (due to Stewart), found at the McLeman link: An integer m >= 2 with factorization Product_{i=1..k} p_i^e_i with the p_i in ascending order is practical if and only if p_1 = 2 and, for 1 < i <= k, p_i <= sigma(Product_{j < i} p_j^e_j) + 1. - Franklin T. Adams-Watters, Nov 09 2006
Practical numbers first appear in Srinivasan's short paper, which contains terms up to 200. Let m be a practical number. He states that (1) if m>2, m is a multiple of 4 or 6; (2) sigma(m) >= 2*m-1 (A103288); and (3) 2^t*m is practical. He also states that highly composite numbers (A002182), perfect numbers (A000396), and primorial numbers (A002110) are practical. - T. D. Noe, Apr 02 2010
Conjecture: The sequence a(n)^(1/n) (n=3,4,...) is strictly decreasing to the limit 1. - Zhi-Wei Sun, Jan 12 2013
Conjecture: For any positive rational number r, there are finitely many pairwise distinct practical numbers q(1)..q(k) such that r = Sum_{j=1..k} 1/q(j). For example, 2 = 1/1 + 1/2 + 1/4 + 1/6 + 1/12 with 1, 2, 4, 6 and 12 all practical, and 10/11 = 1/2 + 1/4 + 1/8 + 1/48 + 1/132 + 1/176 with 2, 4, 8, 48, 132 and 176 all practical. - Zhi-Wei Sun, Sep 12 2015
Analogous with the {1 union primes} (A008578), practical numbers form a complete sequence. This is because it contains all powers of 2 as a subsequence. - Frank M Jackson, Jun 21 2016
Sun's 2015 conjecture on the existence of Egyptian fractions with practical denominators for any positive rational number is true. See the link "Egyptian fractions with practical denominators". - David Eppstein, Nov 20 2016
Conjecture: if all divisors of m are 1 = d_1 < d_2 < ... < d_k = m, then m is practical if and only if d_(i+1)/d_i <= 2 for 1 <= i <= k-1. - Jianing Song, Jul 18 2018
The above conjecture is incorrect. The smallest counterexample is 78 (for which one of these quotients is 13/6; see A174973). m is practical if and only if the divisors of m form a complete subsequence. See Wikipedia links. - Frank M Jackson, Jul 25 2018
Reply to the comment above: Yes, and now I can show the opposite: The largest value of d_(i+1)/d_i is not bounded for practical numbers. Note that sigma(n)/n is not bounded for primorials, and primorials are practical numbers. For any constant c >= 2, let k be a practical number such that sigma(k)/k > 2c. By Bertrand's postulate there exists some prime p such that c*k < p < 2c*k < sigma(k), so k*p is a practical number with consecutive divisors k and p where p/k > c. For example, for k = 78 we have 13/6 > 2, and for 97380 we have 541/180 > 3. - Jianing Song, Jan 05 2019
Erdős (1950) and Erdős and Loxton (1979) proved that the asymptotic density of practical numbers is 0. - Amiram Eldar, Feb 13 2021
Let P(x) denote the number of practical numbers up to x. P(x) has order of magnitude x/log(x) (see Saias 1997). Moreover, we have P(x) = c*x/log(x) + O(x/(log(x))^2), where c = 1.33607... (see Weingartner 2015, 2020 and Remark 1 of Pomerance & Weingartner 2021). As a result, a(n) = k*n*log(n*log(n)) + O(n), where k = 1/c = 0.74846... - Andreas Weingartner, Jun 26 2021
From Hal M. Switkay, Dec 22 2022: (Start)
Every number of least prime signature (A025487) is practical, thereby including two classes of number mentioned in Noe's comment. This follows from Stewart's characterization of practical numbers, mentioned in Adams-Watters's comment, combined with Bertrand's postulate (there is a prime between every natural number and its double, inclusive).
Also, the first condition in Stewart's characterization (p_1 = 2) is equivalent to the second condition with index i = 1, given that an empty product is equal to 1. (End)
Conjecture: every odd number, beginning with 3, is the sum of a prime number and a practical number. Note that this conjecture occupies the space between the unproven Goldbach conjecture and the theorem that every even number, beginning with 2, is the sum of two practical numbers (Melfi's 1996 proof of Margenstern's conjecture). - Hal M. Switkay, Jan 28 2023

References

  • H. Heller, Mathematical Buds, Vol. 1, Chap. 2, pp. 10-22, Mu Alpha Theta OK, 1978.
  • Malcolm R. Heyworth, More on Panarithmic Numbers, New Zealand Math. Mag., Vol. 17 (1980), pp. 28-34 [ ISSN 0549-0510 ].
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 146-147.

Crossrefs

Subsequence of A103288.
Cf. A002093, A007620 (second definition), A030057, A033630, A119348, A174533, A174973.
Cf. A027750.

Programs

  • Haskell
    a005153 n = a005153_list !! (n-1)
    a005153_list = filter (\x -> all (p $ a027750_row x) [1..x]) [1..]
       where p _  0 = True
             p [] _ = False
             p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m)
    -- Reinhard Zumkeller, Feb 23 2014, Oct 27 2011
    
  • Maple
    isA005153 := proc(n)
        local ifs,pprod,p,i ;
        if n = 1 then
            return true;
        elif type(n,'odd') then
            return false ;
        end if;
        # not using ifactors here directly because no guarantee primes are sorted...
        ifs := ifactors(n)[2] ;
        pprod := 1;
        for p in sort(numtheory[factorset](n) ) do
            for i in ifs do
                if op(1,i) = p then
                    if p > 2 and p > 1+numtheory[sigma](pprod) then
                        return false ;
                    end if;
                    pprod := pprod*p^op(2,i) ;
                end if;
            end do:
        end do:
        return true ;
    end proc:
    for n from 1 to 300 do
        if isA005153(n)  then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2023
  • Mathematica
    PracticalQ[n_] := Module[{f,p,e,prod=1,ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p,e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1,prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i,Length[p]}]; ok]]]; Select[Range[200], PracticalQ] (* T. D. Noe, Apr 02 2010 *)
  • PARI
    is_A005153(n)=bittest(n,0) && return(n==1); my(P=1); n && !for(i=2,#n=factor(n)~,n[1,i]>1+(P*=sigma(n[1,i-1]^n[2,i-1])) && return) \\ M. F. Hasler, Jan 13 2013
    
  • Python
    from sympy import factorint
    def is_A005153(n):
        if n & 1: return n == 1
        f = factorint(n) ; P = (2 << f.pop(2)) - 1
        for p in f: # factorint must have prime factors in increasing order
            if p > 1 + P: return
            P *= p**(f[p]+1)//(p-1)
        return True # M. F. Hasler, Jan 02 2023
    
  • Python
    from sympy import divisors;from more_itertools import powerset
    [i for i in range(1,253) if (lambda x:len(set(map(sum,powerset(x))))>sum(x))(divisors(i))] # Nicholas Stefan Georgescu, May 20 2023

Formula

Weingartner proves that a(n) ~ k*n log n, strengthening an earlier result of Saias. In particular, a(n) = k*n log n + O(n log log n). - Charles R Greathouse IV, May 10 2013
More precisely, a(n) = k*n*log(n*log(n)) + O(n), where k = 0.74846... (see comments). - Andreas Weingartner, Jun 26 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
Erroneous comment removed by T. D. Noe, Nov 14 2010
Definition changed to exclude n = 0 explicitly by M. F. Hasler, Jan 19 2013

A119347 Number of distinct sums of distinct divisors of n. Here 0 (as the sum of an empty subset) is excluded from the count.

Original entry on oeis.org

1, 3, 3, 7, 3, 12, 3, 15, 7, 15, 3, 28, 3, 15, 15, 31, 3, 39, 3, 42, 15, 15, 3, 60, 7, 15, 15, 56, 3, 72, 3, 63, 15, 15, 15, 91, 3, 15, 15, 90, 3, 96, 3, 63, 55, 15, 3, 124, 7, 63, 15, 63, 3, 120, 15, 120, 15, 15, 3, 168, 3, 15, 59, 127, 15, 144, 3, 63, 15, 142, 3, 195, 3, 15, 63, 63
Offset: 1

Views

Author

Emeric Deutsch, May 15 2006

Keywords

Comments

If a(n)=sigma(n) (=sum of the divisors of n =A000203(n); i.e. all numbers from 1 to sigma(n) are sums of distinct divisors of n), then n is called a practical number (A005153). The actual sums obtained from the divisors of n are given in row n of the triangle A119348.
The records appear to occur at the highly abundant numbers, A002093, excluding 3 and 10. For n in A174533, a(n) = sigma(n)-2. - T. D. Noe, Mar 29 2010
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020
Zumkeller numbers A083207 give the positions of even terms in this sequence (likewise, the positions of odd terms in A308605). - Antti Karttunen and Ilya Gutkovskiy, Nov 29 2024

Examples

			a(5)=3 because the divisors of 5 are 1 and 5 and all the possible sums: are 1,5 and 6; a(6)=12 because we can form all sums 1,2,...,12 by adding up the terms of a nonempty subset of the divisors 1,2,3,6 of 6.
		

Crossrefs

One less than A308605.
Cf. A083207 (positions of even terms).

Programs

  • Haskell
    import Data.List (subsequences, nub)
    a119347 = length . nub . map sum . tail . subsequences . a027750_row'
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Maple
    with(numtheory): with(linalg): a:=proc(n) local dl,t: dl:=convert(divisors(n),list): t:=tau(n): nops({seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)}) end: seq(a(n),n=1..90);
  • Mathematica
    a[n_] := Total /@ Rest[Subsets[Divisors[n]]] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Jan 27 2018 *)
  • PARI
    A119347(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); sum(i=1,poldegree(p),(0Antti Karttunen, Nov 28 2024
    
  • PARI
    A119347(n) = { my(c=[0]); fordiv(n, d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
  • Python
    from sympy import divisors
    def A119347(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        return len(c)-1 # Chai Wah Wu, Jul 05 2023
    

Formula

For n > 1, 3 <= a(n) <= sigma(n). - Charles R Greathouse IV, Feb 11 2019
For p prime, a(p) = 3. For k >= 0, a(2^k) = 2^(k + 1) - 1. - Ctibor O. Zizka, Oct 19 2023
From Antti Karttunen, Nov 29 2024: (Start)
a(n) = A308605(n)-1.
a(n) = 2*(A237290(n)/A000203(n)) - 1. [Found by Sequence Machine. See A237290.]
a(n) <= A100587(n).
(End)

Extensions

Definition clarified by Antti Karttunen, Nov 29 2024

A237290 Sum of positive numbers k <= sigma(n) that are a sum of any subset of distinct divisors of n.

Original entry on oeis.org

1, 6, 8, 28, 12, 78, 16, 120, 52, 144, 24, 406, 28, 192, 192, 496, 36, 780, 40, 903, 256, 288, 48, 1830, 124, 336, 320, 1596, 60, 2628, 64, 2016, 384, 432, 384, 4186, 76, 480, 448, 4095, 84, 4656, 88, 2688, 2184, 576, 96, 7750, 228, 2976, 576, 3136, 108, 7260
Offset: 1

Views

Author

Jaroslav Krizek, Mar 02 2014

Keywords

Examples

			For n = 5, a(5) = 1 + 5 + 6 = 12 (each of the numbers 1, 5 and 6 is the sum of a subset of distinct divisors of 5).
The numbers n = 14 and 15 is an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237289(14) = A237289(15).
a(14) = 1+2+3+7+8+9+10+14+15+16+17+21+22+23+24 = a(15) = 1+3+4+5+6+8+9+15+16+18+19+20+21+23+24 = 192.
		

Crossrefs

Cf. A000203, A119348, A005153, A119347 (count of the same numbers), A184387, A229335, A237287, A237289.

Programs

  • Maple
    isSumDist := proc(n,k)
        local dvs,s ;
        dvs := numtheory[divisors](n) ;
        for s in combinat[powerset](dvs) do
            add(m,m=op(s)) ;
            if % = k then
                return true;
            end if;
        end do:
        false ;
    end proc:
    A237290 := proc(n)
        local a;
        a := 0 ;
        for k from 1 to numtheory[sigma](n) do
            if isSumDist(n,k) then
                a := a+k;
            end if;
        end do:
    end proc:
    seq(A237290(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
  • Mathematica
    a[n_] := Plus @@ Union[Plus @@@ Subsets@ Divisors@ n]; Array[a, 54] (* Giovanni Resta, Mar 13 2014 *)
  • PARI
    padbin(n, len) = {b = binary(n); while(length(b) < len, b = concat(0, b);); b;}
    a(n) = {vks = []; d = divisors(n); nbd = #d; for (i=1, 2^nbd-1, b = padbin(i, nbd); onek = sum(j=1, nbd, d[j]*b[j]); vks = Set(concat(vks, onek));); sum(i=1, #vks, vks[i]);} \\ Michel Marcus, Mar 09 2014
    
  • PARI
    A237290(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); vecsum(c); }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
    
  • Python
    from sympy import divisors
    def A237290(n):
        ds = divisors(n)
        c, s = {0}, sum(ds)
        for d in ds:
            c |=  {a+d for a in c}
        return sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023

Formula

a(n) = A184387(n) - A237289(n).
a(p) = 2(p+2) for odd primes p.
a(n) = A184387(n) for practical numbers n (A005153), a(n) < A184387(n) for numbers n that are not practical (A237287).
a(n) = A000203(n) * (A119347(n)+1) / 2. [Found by Sequence Machine and easily seen to be true. Compare for example to the formulas of A229335.] - Antti Karttunen, Nov 29 2024

A237289 Sum of positive numbers k <= sigma(n) that are not a sum of any subset of distinct divisors of n.

Original entry on oeis.org

0, 0, 2, 0, 9, 0, 20, 0, 39, 27, 54, 0, 77, 108, 108, 0, 135, 0, 170, 0, 272, 378, 252, 0, 372, 567, 500, 0, 405, 0, 464, 0, 792, 1053, 792, 0, 665, 1350, 1148, 0, 819, 0, 902, 882, 897, 2052, 1080, 0, 1425, 1395, 2052, 1715, 1377, 0, 2052, 0, 2600, 3375, 1710
Offset: 1

Views

Author

Jaroslav Krizek, Mar 02 2014

Keywords

Examples

			For n = 5, a(5) = 2 + 3 + 4 = 9 (numbers 2, 3 and 4 are not a sum of any subset of distinct divisors of 5).
Numbers n = 14 and 15 are an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237290(14) = A237290(15).
a(14) = 4+5+6+11+12+13+18+19+20 = a(15) = 2+7+10+11+12+13+14+17+22 = 108.
a(6) = 0 as 6 is practical; the sums into distinct divisors from 1 through 12 are 1 = 1, 2 = 2, 3 = 3, 4 = 1 + 3, 5 = 2 + 3, 6 = 1 + 2 + 3, 7 through 12 are (1 through 6) + 6. So none are not a sum distinct divisors of 6. - _David A. Corneth_, Jul 22 2025
		

Crossrefs

Programs

  • Maple
    isSumDist := proc(n,k)
        local dvs ;
        dvs := numtheory[divisors](n) ;
        for s in combinat[powerset](dvs) do
            add(m,m=op(s)) ;
            if % = k then
                return true;
            end if;
        end do:
        false ;
    end proc:
    A237289 := proc(n)
        local a;
        a := 0 ;
        for k from 1 to numtheory[sigma](n) do
            if not isSumDist(n,k) then
                a := a+k;
            end if;
        end do:
        a ;
    end proc:
    seq(A237289(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
  • Mathematica
    a[n_] := Block[{d = Divisors@n, s}, s = Plus @@ d; s*(s + 1)/2 - Plus @@ Union[Plus @@@ Subsets@d]]; m = Array[a, 59] (* Giovanni Resta, Mar 13 2014 *)
  • Python
    from sympy import divisors
    def A237289(n):
        ds = divisors(n)
        c, s = {0}, sum(ds)
        for d in ds:
            c |=  {a+d for a in c}
        return (s*(s+1)>>1)-sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023

Formula

a(n) = A184387(n) - A237290(n).
a(p) = p(p - 1) / 2 - 1 for p = prime > 2.
a(n) = 0 for practical numbers (A005153), a(n) > 0 for numbers that are not practical (A237287).
a(n) = A184387(n) - A229335(n) for numbers n such that A119347(n) = A100587(n).

Extensions

a(55) and a(57)-a(59) corrected by Giovanni Resta, Mar 13 2014

A307223 Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2019

Keywords

Comments

T(n, k) > 0 for all values of k iff n is practical (A005153).

Examples

			Table begins as:
  1
  1,1,1
  1,0,1,1
  1,1,1,1,1,1,1
  1,0,0,0,1,1
  1,1,2,1,1,2,1,1,2,1,1,1
  1,0,0,0,0,0,1,1
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  1,0,1,1,0,0,0,0,1,1,0,1,1
  1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1
		

Crossrefs

Cf. A000203 (row lengths), A307224 (row products).

Programs

  • Mathematica
    T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; Table[T[n, k], {n,1,10}, {k, 1, DivisorSigma[1,n]}] // Flatten

Formula

T(n, n) = A033630(n).
T(n, A030057(n)) = 0 if there is a 0 in the n-th row, i.e. A030057(n) <= sigma(n) or n is not practical.

A119357 Numbers k such that the number of distinct nonzero sums of distinct divisors of k is less than 2^tau(k) - 1 (the largest number of possible distinct sums, tau(k) being the number of divisors of k (A000005)).

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 140, 144, 150, 154, 156, 160, 162, 165, 168, 170, 174, 176, 180, 182, 186, 189, 192, 195
Offset: 1

Views

Author

Emeric Deutsch, May 18 2006

Keywords

Comments

Equivalently, numbers k for which there exist two distinct subsets of the set of divisors of k having the same sum.
The sequence is closed with respect to multiplication by positive integers (i.e. any multiple of any term in the sequence is in the sequence). The primitive entries of the sequence, i.e. those that are not multiples of other terms of the sequence, are given in A119425 (the first five are 6,20,28,45 and 63).
The number of distinct sums of distinct divisors of n are given in A119347 and the actual sums are given in row n of the triangle A119348.
Subsequence of A051774 (Max Alekseyev).

Examples

			6 is in the sequence because from the divisors of 6, namely 1,2,3,6, we can form by addition 12 sums (1,2,3,...,12) and 12 < 2^tau(6)-1=2^4-1=15.
Sequence contains, for example, all multiples of 6 (1+2=3), all multiples of 20 (1+4=5), all multiples of 28 (1+2+4=7), all multiples of 63 (1+9=3+7).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(linalg): s:=proc(n) local dl,t:dl:=convert(divisors(n),list): t:=tau(n): nops({seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)}) end: a:=proc(n) if s(n)<2^tau(n)-1 then n else fi end: seq(a(n),n=1..230);
  • Mathematica
    q[n_] := Module[{d = Divisors[n], x}, Max[CoefficientList[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, Total[d]}], x]] > 1]; Select[Range[200], q] (* Amiram Eldar, Jan 02 2022 *)

A193280 Triangle read by rows: row n contains, in increasing order, all the distinct sums of distinct proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 4, 5, 6, 7, 1, 3, 4, 1, 2, 3, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 1, 2, 3, 7, 8, 9, 10, 1, 3, 4, 5, 6, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1

Views

Author

Michael Engling, Jul 20 2011

Keywords

Comments

Row n > 1 contains A193279(n) terms. In row n the first term is 1 and the last term is sigma(n) - n (= A000203(n) - n). Row 1 contains 0 because 1 has no proper divisors.

Examples

			Row 10 is 1,2,3,5,6,7,8 the possible sums obtained from the proper divisors 1, 2, and 5 of 10.
Triangle starts:
  0;
  1;
  1;
  1,2,3;
  1;
  1,2,3,4,5,6;
  1;
  1,2,3,4,5,6,7;
  1,3,4;
  1,2,3,5,6,7,8;
  1;
  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16;
		

Crossrefs

Programs

  • Maple
    with(linalg): print(0); for n from 2 to 12 do dl:=convert(numtheory[divisors](n) minus {n}, list): t:=nops(dl): print(op({seq(innerprod(dl, convert(2^t+i, base, 2)[1..t]), i=1..2^t-1)})): od: # Nathaniel Johnston, Jul 23 2011

A377929 Quasi-practical numbers: positive integers m such that every k <= sigma(m)-m is a sum of distinct proper divisors of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 47, 48, 53, 54, 56, 59, 60, 61, 64, 66, 67, 71, 72, 73, 78, 79, 80, 83, 84, 88, 89, 90, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 120, 126, 127, 128
Offset: 1

Views

Author

Andrzej Kukla, Nov 11 2024

Keywords

Comments

Equivalently, positive integers m such that every number k <= d is a sum of distinct proper divisors of m, where d is the largest proper divisor of m (follows from Corollary 2.11 in the Kukla and Miska paper).
Rao and Peng (2013) proved that a number is quasi practical if and only if it is prime or practical (also Theorem 2.9 in Kukla/Miska paper).

Crossrefs

Programs

  • Mathematica
    QuasiPracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]] || PrimeQ[n]]; Select[Range[200], QuasiPracticalQ] (* Created based on code by T. D. Noe, Apr 02 2010 *)

A385904 a(n) is the number of nonempty subsets of the divisors of n that sum to a perfect square.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 3, 3, 2, 1, 11, 1, 3, 4, 5, 1, 9, 1, 9, 3, 3, 1, 27, 2, 2, 4, 8, 1, 27, 1, 7, 3, 2, 2, 49, 1, 1, 3, 22, 1, 21, 1, 7, 8, 3, 1, 77, 2, 5, 2, 4, 1, 22, 2, 21, 2, 1, 1, 248, 1, 2, 7, 11, 1, 21, 1, 4, 2, 17, 1, 235, 1, 1, 9, 7, 1, 20, 1, 64, 6, 1
Offset: 1

Views

Author

Felix Huber, Jul 21 2025

Keywords

Examples

			a(6) = 4 because exactly the 4 nonempty subsets {1}, {1, 3}, {1, 2, 6} and {3, 6} of the divisors of 6 sum to a perfect square: 1 = 1^2, 1 + 3 = 2^2, 1 + 2 + 6 = 3^2.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A385904:=proc(n)
        local b,l,j;
        l:=[(Divisors(n))[]]:
        b:=proc(m,i)
            option remember;
            `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
    	end;
        add(b(j^2,nops(l)),j=1..floor(sqrt(sigma(n))));
    end:
    seq(A385904(n),n=1..82);
  • Mathematica
    a[n_]:=Module[{nb = 0, d = Divisors[n]},Length[Select[Subsets[d],IntegerQ[Sqrt[Total[#]]]&]]]-1;Array[a,82] (* James C. McMahon, Jul 27 2025 *)
  • PARI
    a(n) = my(nb=0, d=divisors(n)); forsubset(#d, s, nb+=issquare(sum(i=1, #s, d[s[i]]))); nb-1; \\ Michel Marcus, Jul 22 2025

Formula

a(p) = 1 for primes p != 3.
Showing 1-9 of 9 results.