cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A029776 Digits of n appear in n^3.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 11, 12, 21, 24, 25, 29, 32, 33, 34, 39, 40, 44, 49, 50, 51, 54, 55, 56, 59, 60, 61, 64, 65, 66, 67, 71, 72, 73, 75, 76, 88, 90, 97, 99, 100, 101, 102, 106, 109, 110, 111, 112, 114, 115, 116, 119, 120, 124, 125, 129, 137, 151, 153, 176
Offset: 1

Views

Author

Keywords

Examples

			66 is in the list because 66^3 = 287496 and 6 appears in 287496.
153 is in the list because 153^3 = 3581577 and 1, 5, 3 appear in 3581577.
		

Crossrefs

Contains A119735.

Programs

  • Magma
    [n: n in [0..200] | Intseq(n) subset Intseq(n^3)]; // Bruno Berselli, Aug 01 2013
    
  • Maple
    filter:= n -> convert(convert(n,base,10),set) subset convert(convert(n^3,base,10),set):select(filter, [$0..200]); # Robert Israel, Mar 18 2020
  • PARI
    isok(m) = my(d=Set(digits(m)), ddd=Set(digits(m^3))); setintersect(d, ddd) == d; \\ Michel Marcus, Mar 18 2020
    
  • Python
    from itertools import count, islice
    def A029776_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:set(str(n)) <= set(str(n**3)), count(max(startvalue,0)))
    A029776_list = list(islice(A029776_gen(),20)) # Chai Wah Wu, Apr 03 2023

Extensions

Offset changed to 1 by Robert Israel, Mar 18 2020

A235807 Numbers n such that n^3 has one or more occurrences of exactly five different digits.

Original entry on oeis.org

22, 24, 27, 29, 32, 35, 38, 41, 47, 48, 49, 51, 52, 54, 55, 57, 61, 63, 65, 71, 72, 82, 85, 87, 89, 94, 96, 102, 103, 104, 105, 108, 109, 119, 120, 123, 125, 126, 127, 130, 133, 134, 136, 137, 138, 141, 143, 144, 149, 152, 153, 154, 155, 158, 162, 165, 167
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			22 is in the sequence because 22^3 = 10648, which contains exactly five different digits: 0, 1, 4, 6, 8.
87 is in the sequence because 87^3 = 658503, which contains exactly five different digits: 0, 3, 5, 6, 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | #Set(Intseq(n^3)) eq 5]; // Bruno Berselli, Jan 19 2014
    
  • Mathematica
    Select[Range[200], Length[Union[IntegerDigits[#^3]]] == 5 &] (* Bruno Berselli, Jan 19 2014 *)
  • PARI
    s=[]; for(n=1, 200, if(#vecsort(eval(Vec(Str(n^3))),,8)==5, s=concat(s, n))); s
    
  • Python
    A235807_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**5+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 5:
            A235807_list.append(n) # Chai Wah Wu, Nov 05 2014

A235811 Numbers n such that n^3 has one or more occurrences of exactly nine different digits.

Original entry on oeis.org

1018, 1028, 1112, 1452, 1475, 1484, 1531, 1706, 1721, 1733, 1818, 1844, 1895, 1903, 2008, 2033, 2208, 2214, 2217, 2223, 2257, 2274, 2277, 2327, 2329, 2336, 2354, 2394, 2403, 2524, 2525, 2589, 2647, 2686, 2691, 2694, 2727, 2733, 2784, 2842, 2866, 2884, 2890
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			1018 is in the sequence because 1018^3 = 1054977832, which contains exactly nine different digits.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],Count[DigitCount[#^3],0]==1&] (* Harvey P. Dale, Dec 17 2021 *)
  • PARI
    s=[]; for(n=1, 3000, if(#vecsort(eval(Vec(Str(n^3))),,8)==9, s=concat(s, n))); s
    
  • Python
    A235811_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**4+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 9:
            A235811_list.append(n) # Chai Wah Wu, Nov 05 2014

A363905 Numbers whose square and cube taken together contain each decimal digit.

Original entry on oeis.org

69, 128, 203, 302, 327, 366, 398, 467, 542, 591, 593, 598, 633, 643, 669, 690, 747, 759, 903, 923, 943, 1016, 1018, 1027, 1028, 1043, 1086, 1112, 1182, 1194, 1199, 1233, 1278, 1280, 1282, 1328, 1336, 1364, 1396, 1419, 1459, 1463, 1467, 1472, 1475
Offset: 1

Views

Author

M. F. Hasler, Jun 27 2023

Keywords

Comments

The first term, a(1) = 69, is the only number for which the square and the cube together contain each decimal digit 0 to 9 exactly once.
a(820) = 6534 is the only number of which the square and cube taken together contain each digit 0 to 9 exactly twice.

Examples

			69^2 = 4761, 69^3 = 328509, which together contain each digit 0-9 exactly once.
		

Crossrefs

Cf. A036744, A054038, A071519 and A156977 for "pandigital" squares.
Cf. A119735: Numbers n such that every digit occurs at least once in n^3.

Programs

  • Mathematica
    fQ[n_] := Union[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[Range@1500, fQ] (* Robert G. Wilson v, Jun 27 2023 *)
  • PARI
    is(k)=#setunion(Set(digits(k^2)),Set(digits(k^3)))>9
    select(is,[1..9999])
    
  • Python
    from itertools import count, islice
    def A363905_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:len(set(str(n**2))|set(str(n**3)))==10,count(max(startvalue,1)))
    A363905_list = list(islice(A363905_gen(),20)) # Chai Wah Wu, Jun 27 2023

A121321 Numbers k such that every digit occurs at least once in k^4.

Original entry on oeis.org

763, 767, 1066, 1088, 1206, 1304, 1425, 1557, 1561, 1634, 1653, 1712, 1739, 1782, 1818, 1839, 1866, 1878, 1975, 2032, 2045, 2055, 2134, 2192, 2232, 2233, 2299, 2318, 2339, 2347, 2358, 2425, 2441, 2489, 2509, 2511, 2575, 2646, 2682, 2692
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			763^4 = 338920744561 contains every digits at least once.
		

Crossrefs

Cf. A119735 (in k^3), A054038 (in k^2).

Programs

  • Magma
    [ n: n in [0..2695] | Seqset(Intseq(n^4)) eq {0..9} ]; // Bruno Berselli, May 17 2011
    
  • Mathematica
    Select[Range[2692],ContainsAll[IntegerDigits[#^4],Range[0,9]]&] (* James C. McMahon, Oct 16 2024 *)
  • PARI
    isok(k) = #Set(digits(k^4)) == 10;

A235808 Numbers k such that k^3 has one or more occurrences of exactly six different digits.

Original entry on oeis.org

59, 66, 69, 73, 75, 76, 84, 88, 93, 97, 107, 112, 113, 115, 116, 118, 124, 128, 129, 131, 139, 147, 148, 151, 156, 159, 161, 166, 168, 169, 174, 178, 181, 183, 184, 187, 189, 193, 194, 196, 207, 219, 226, 232, 234, 235, 236, 238, 240, 241, 246, 253, 255, 262
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			59 is in the sequence because 59^3 = 205379, which contains exactly six different digits: 0, 2, 3, 5, 7, 9.
107 is in the sequence because 107^3 = 1225043, which contains exactly six different digits: 0, 1, 2, 3, 4, 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..300] | #Set(Intseq(n^3)) eq 6]; // Bruno Berselli, Jan 19 2014
    
  • Mathematica
    Select[Range[300], Length[Union[IntegerDigits[#^3]]] == 6 &] (* Bruno Berselli, Jan 19 2014 *)
    Select[Range[300],Count[DigitCount[#^3],0]==4&] (* Harvey P. Dale, May 28 2025 *)
  • PARI
    s=[]; for(n=1, 300, if(#vecsort(eval(Vec(Str(n^3))),,8)==6, s=concat(s, n))); s
    
  • Python
    A235808_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**4+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 6:
            A235808_list.append(n) # Chai Wah Wu, Nov 05 2014

A235809 Numbers k such that k^3 has one or more occurrences of exactly seven different digits.

Original entry on oeis.org

135, 145, 203, 221, 223, 225, 227, 233, 243, 244, 245, 247, 249, 254, 257, 265, 272, 273, 275, 276, 299, 313, 327, 329, 334, 338, 341, 345, 347, 352, 365, 366, 368, 382, 384, 388, 393, 395, 398, 403, 405, 409, 411, 412, 434, 439, 447, 452, 455, 473, 486, 493
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			135 is in the sequence because 135^3 = 2460375, which contains exactly seven different digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200] | #Set(Intseq(n^3)) eq 7]; // Vincenzo Librandi, Nov 07 2014
    
  • Mathematica
    Select[Range[500], Length[Union[IntegerDigits[#^3]]]==7&] (* Vincenzo Librandi, Nov 07 2014 *)
  • PARI
    s=[]; for(n=1, 600, if(#vecsort(eval(Vec(Str(n^3))),,8)==7, s=concat(s, n))); s
    
  • PARI
    for(n=0,10^3,if(#Set(digits(n^3))==7,print1(n,", "))); \\ Joerg Arndt, Nov 10 2014
    
  • Python
    from itertools import count, islice
    def A235809gen(): return filter(lambda n:len(set(str(n**3))) == 7,count(0))
    A235809_list = list(islice(A235809gen(),26)) # Chai Wah Wu, Dec 23 2021

A235810 Numbers n such that n^3 has one or more occurrences of exactly eight different digits.

Original entry on oeis.org

289, 297, 302, 319, 467, 494, 515, 557, 562, 595, 621, 623, 676, 682, 709, 712, 721, 862, 887, 909, 939, 945, 949, 963, 984, 987, 1012, 1015, 1016, 1025, 1029, 1043, 1049, 1065, 1075, 1087, 1104, 1106, 1107, 1114, 1118, 1132, 1137, 1154, 1161, 1167, 1178
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			289 is in the sequence because 289^3 = 24137569, which contains exactly eight different digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200] | #Set(Intseq(n^3)) eq 8]; // Vincenzo Librandi, Nov 07 2014
  • PARI
    s=[]; for(n=1, 1500, if(#vecsort(eval(Vec(Str(n^3))),,8)==8, s=concat(s, n))); s
    
  • Python
    A235810_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**3+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 8:
            A235810_list.append(n) # Chai Wah Wu, Nov 05 2014
    

A363927 Numbers N such that in the concatenation of N^2 and N^3, each of the 10 decimal digits appears equally often.

Original entry on oeis.org

69, 6534, 497375, 539019, 543447, 586476, 589629, 601575, 646479, 858609, 895688, 959097, 46839081, 47469378, 47693199, 47760623, 47841576, 48038964, 48527792, 48733506, 48886836, 48965892, 49229103, 49397283, 49594832, 49670616, 50013116, 50247423, 50359157
Offset: 1

Views

Author

Keywords

Comments

a(3) = 497375 and a(11) = 895688 are the only terms < 10^6 that are not divisible by 3.
Each term has an even number of decimal digits, k, and a corresponding value between 10^(k-1)*100^(1/3) and 10^k. - Michael S. Branicky, Jun 29 2023
Indeed, the number of digits of concat(N^2, N^3) is floor(2*L + 1) + floor(3*L + 1) where L = log_10(N). This is a multiple of 10 iff L mod 2 is in the interval [5/3, 2), which means that N is in the above range for some even k. - M. F. Hasler, Jul 02 2023

Crossrefs

Cf. A363905, A363909: concat(n^2, n^3) has each digit at least once / twice.
Cf. A171102: pandigital numbers.
Cf. A036744, A054038, A071519 and A156977 for "pandigital squares".
Cf. A119735: n^3 is pandigital.

Programs

  • Mathematica
    fQ[n_] := Length@ Union[ Count[ Sort[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]], #] & /@ Range[0, 9]] == 1; Select[ Range@ 52000000, fQ] (* Robert G. Wilson v, Jul 01 2023 *)
  • PARI
    is(n)={my(v=concat(digits(n^2),digits(n^3)), c=#v); c%10==0 && vecsort(v)==[0..c-1]\(c\10)}
    for(n=1,1e6, is(n)&& print1(n","))

Extensions

a(13) and beyond from Michael S. Branicky, Jun 28 2023

A121322 Numbers m such that m^5 contains every digit at least once.

Original entry on oeis.org

309, 418, 462, 474, 575, 635, 662, 699, 702, 713, 737, 746, 747, 748, 765, 771, 795, 838, 875, 876, 892, 897, 943, 945, 976, 1009, 1012, 1018, 1033, 1072, 1104, 1107, 1137, 1143, 1149, 1167, 1174, 1183, 1187, 1195, 1203, 1233, 1248, 1249, 1269, 1292
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			309^5 = 2817036000549 contains every digit at least once.
		

Crossrefs

Cf. A054038 (with m^2), A119735 (with m^3).

Programs

  • Mathematica
    Select[Range@1500, 1+Union@IntegerDigits@(#^5)==Range@10&] (* Hans Rudolf Widmer, Nov 02 2021 *)
  • PARI
    isok(m) = #Set(digits(m^5)) == 10; \\ Michel Marcus, Nov 02 2021
    
  • Python
    def ok(n): return len(set(str(n**5))) == 10
    print([m for m in range(1293) if ok(m)]) # Michael S. Branicky, Nov 02 2021
Showing 1-10 of 13 results. Next