cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120459 Row sums of A120458.

Original entry on oeis.org

1, 3, 14, 161, 3124, 181259, 6732438, 493478345, 24995572328, 2255433009731, 470444892889498, 38714638073629151, 7749166585021832892, 1203906832960860262109, 121893712541593098356318, 17161342484454585041813495, 4656941131185104848296141136, 1513056629126772227843475996471
Offset: 0

Views

Author

Roger L. Bagula, Jun 24 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[Prime[k]^n, {k, 1, n}]; Array[a, 18, 0] (* Amiram Eldar, Jun 08 2025 *)
  • PARI
    a(n) = 1 + sum(k = 1, n, prime(k)^n); \\ Amiram Eldar, Jun 08 2025

Formula

From Amiram Eldar, Jun 08 2025: (Start)
a(n) = 1 + Sum_{k=1..n} prime(k)^n.
a(n) = A291140(n) + 1 for n >= 1. (End)

Extensions

More terms from Amiram Eldar, Jun 08 2025

A030514 a(n) = prime(n)^4.

Original entry on oeis.org

16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1

Views

Author

Keywords

Comments

Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - Alexandre Wajnberg, Jan 15 2006
Subsequence of A036967. - Reinhard Zumkeller, Feb 05 2008
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - R. J. Mathar, Feb 01 2009
Except for the first three terms, all others are congruent to 1 mod 240. - Robert Israel, Aug 29 2014

Crossrefs

Programs

Formula

a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End)

Extensions

Description corrected by Eric W. Weisstein

A030627 Numbers with 9 divisors.

Original entry on oeis.org

36, 100, 196, 225, 256, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6561, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^8 (8th row of A120458) or p^2*r^2 (A085986), where p and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Mathematica
    Select[Range[90000],DivisorSigma[0,#]==9&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==9 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A030627(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=isqrt(x))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(isqrt(s)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 9. - Juri-Stepan Gerasimov, Oct 10 2009
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(8) = 0.0678286..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A197987 a(n) = prime(n)^(n+1).

Original entry on oeis.org

4, 27, 625, 16807, 1771561, 62748517, 6975757441, 322687697779, 41426511213649, 12200509765705829, 787662783788549761, 243569224216081305397, 37929227194915558802161, 3177070365797955661914307, 566977372488557307219621121, 205442259656281392806087233013
Offset: 1

Views

Author

Bruno Berselli, Oct 20 2011

Keywords

Comments

Subsequence of A000961, A120458.
First five elements are also consecutive members of A133018. - Omar E. Pol, Oct 20 2011
Third diagonal of A319075. - Omar E. Pol, Sep 13 2018

Examples

			The fourth prime number is 7, so a(4) = 7^(4+1) = 7^5 = 16807. - _Omar E. Pol_, Oct 20 2011
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^(n+1): n in [1..16]];
  • Mathematica
    Table[Prime[n]^(n+1),{n,20}] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    for(n=1, 16, print1(prime(n)^(n+1)", "));
    

Formula

a(n) = A000040(n)^(n+1). - Omar E. Pol, Oct 20 2011
Showing 1-4 of 4 results.