cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A089072 Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1

Views

Author

Alford Arnold, Dec 04 2003

Keywords

Comments

T(n, k) = number of mappings from an n-element set into a k-element set. - Clark Kimberling, Nov 26 2004
Let S be the semigroup of (full) transformations on [n]. Let a be in S with rank(a) = k. Then T(n,k) = |a S|, the number of elements in the right principal ideal generated by a. - Geoffrey Critzer, Dec 30 2021
From Manfred Boergens, Jun 23 2024: (Start)
In the following two comments the restriction k<=n can be lifted, allowing all k>=1.
T(n,k) is the number of n X k binary matrices with row sums = 1.
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k with disjoint A_j, with P(.) denoting the power set.
For nonempty A_j see A019538.
For tuples with "disjoint" dropped see A092477.
For tuples with nonempty A_j and with "disjoint" dropped see A218695. (End)

Examples

			Triangle begins:
  1;
  1,  4;
  1,  8,  27;
  1, 16,  81,  256;
  1, 32, 243, 1024,  3125;
  1, 64, 729, 4096, 15625, 46656;
  ...
		

Crossrefs

Related to triangle of Eulerian numbers A008292.

Programs

  • Haskell
    a089072 = flip (^)
    a089072_row n = map (a089072 n) [1..n]
    a089072_tabl = map a089072_row [1..]  -- Reinhard Zumkeller, Mar 18 2013
    
  • Magma
    [k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
  • SageMath
    flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022

Formula

Sum_{k=1..n} T(n, k) = A031971(n).
T(n, n) = A000312(n).
T(2*n, n) = A062206(n).
a(n) = (n + T*(1-T)/2)^T, where T = round(sqrt(2*n),0). - Gerald Hillier, Apr 12 2015
T(n,k) = A051129(n,k). - R. J. Mathar, Dec 10 2015
T(n,k) = Sum_{i=0..k} Stirling2(n,i)*binomial(k,i)*i!. - Geoffrey Critzer, Dec 30 2021
From G. C. Greubel, Nov 01 2022: (Start)
T(n, n-1) = A007778(n-1), n >= 2.
T(n, n-2) = A008788(n-2), n >= 3.
T(2*n+1, n) = A085526(n).
T(2*n-1, n) = A085524(n).
T(2*n-1, n-1) = A085526(n-1), n >= 2.
T(3*n, n) = A083282(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A120485(n).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226065(n).
Sum_{k=1..floor(n/2)} T(n, k) = A352981(n).
Sum_{k=1..floor(n/3)} T(n, k) = A352982(n). (End)

Extensions

More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
Offset corrected by Reinhard Zumkeller, Mar 18 2013

A038125 a(n) = Sum_{k=0..n} (k-n)^k.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 0, 6, -19, 29, 48, -524, 2057, -3901, -9632, 129034, -664363, 1837905, 2388688, -67004696, 478198545, -1994889945, 1669470784, 56929813934, -615188040195, 3794477505573, -12028579019536, -50780206473220
Offset: 0

Views

Author

Jim Ferry (jferry(AT)alum.mit.edu)

Keywords

Examples

			0^0 = 1,
1^0 - 0^1 = 1,
2^0 - 1^1 + 0^2 = 0,
3^0 - 2^1 + 1^2 - 0^3 = 0,
...
		

Crossrefs

Programs

  • Mathematica
    Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ Seiichi Manyama, Dec 02 2021
    
  • PARI
    a(n) = sum(k=0, n, (k-n)^k); \\ Michel Marcus, Dec 03 2021

Formula

G.f.: 1+ sum(k>=0, x^(k+1)/(1+x^(k+1)) ) = 1/Q(0), where Q(k) = 1 - x + x^2*(k+1)/(1 + (k+1)*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 10 2014

A349884 Expansion of Sum_{k>=0} (k * x)^k/(1 + k^2 * x).

Original entry on oeis.org

1, 1, 3, 12, 76, 961, 15407, 221528, 3260936, 80774113, 2462081967, 50963779604, 922244742292, 61063845514113, 2868669700179871, 2019727494212912, -47889136910252848, 461395118866593115713, 5781219348638565771423, -2108738296748190078596084
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 2*n - k == 0, 1, (-1)^(n - k) * k^(2*n - k)], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, t=2) = sum(k=0, n, (-k^t)^(n-k)*k^k);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k^2*x)))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n-k).

A349889 a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n).

Original entry on oeis.org

1, 1, 15, 666, 59230, 8775075, 1948891581, 605698755508, 250914820143996, 133610836793706405, 88919025666286620475, 72317513878698256697166, 70571883548815735717843290, 81383769918571603591381635271
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[(-1)^(n-k) k^(2n),{k,0,n}],{n,20}]] (* Harvey P. Dale, Nov 19 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k^(2*n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1+k^2*x)))

Formula

G.f.: Sum_{k>=0} (k^2 * x)^k/(1 + k^2 * x).
a(n) ~ 1/(1 + exp(-2)) * n^(2*n). - Vaclav Kotesovec, Dec 10 2021

A349891 a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(k*n).

Original entry on oeis.org

1, 0, 16, 19619, 4294436111, 298022124379673232, 10314423867168242405282727694, 256923577039829077600620024397823949901879, 6277101735175093150055816289268196664555481440709896684157
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k^(k*n));
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k^k^2*x^k/(1+k^k*x)))

Formula

G.f.: Sum_{k>=0} k^(k^2) * x^k/(1 + k^k * x).
a(n) ~ n^(n^2). - Vaclav Kotesovec, Dec 10 2021

A091884 Triangle of numbers defined by Knuth.

Original entry on oeis.org

1, 1, 1, 4, 3, 3, 27, 19, 20, 20, 256, 175, 191, 190, 190, 3125, 2101, 2344, 2312, 2313, 2313, 46656, 31031, 35127, 34398, 34462, 34461, 34461, 823543, 543607, 621732, 605348, 607535, 607407, 607408, 607408, 16777216, 11012415, 12692031, 12301406, 12366942, 12360381, 12360637, 12360636, 12360636
Offset: 0

Views

Author

Michael Somos, Feb 08 2004

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     4,    3,    3;
    27,   19,   20,   20;
   256,  175,  191,  190,  190;
  3125, 2101, 2344, 2312, 2313, 2313;
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.4 Answer to Exer. 46.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.

Crossrefs

Column k=0..1 give A000312, A045531.
Main diagonal gives A120485.

Programs

  • PARI
    T(n,k)=if(k<0 || k>n,0,sum(j=0,k,(-1)^j*(n-j)^n))

Formula

T(n,k) = Sum_{j=0..k} (-1)^j * (n-j)^n.

A332627 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 + k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A072364 = exp(-exp(-1)). - Vaclav Kotesovec, Jul 10 2021
E.g.f.: Sum_{k>=0} (k*x*exp(-x))^k. - Seiichi Manyama, Feb 19 2022

A349885 Expansion of Sum_{k>=0} (k * x)^k/(1 + k^3 * x).

Original entry on oeis.org

1, 1, 3, -4, -218, 4377, 189549, -13317056, -283835940, 117015022505, -5604964950389, -1791024716075124, 422751913131376674, 8850160172208790801, -30082452518043880807911, 7173002090013176579439392, 1556433498641034120823054072
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 3*n - 2*k == 0, 1, (-1)^(n - k) * k^(3*n - 2*k)], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, t=3) = sum(k=0, n, (-k^t)^(n-k)*k^k);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k^3*x)))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(3*n-2*k).

A349902 a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(3*n).

Original entry on oeis.org

1, 1, 63, 19172, 16249870, 29458152441, 97813591721181, 537081363012854224, 4535464309375188976956, 55796581668379082029481225, 958824462567528346234944706075, 22255431432328421226838750870120356, 678866987929798923743810982299237129610
Offset: 0

Views

Author

Seiichi Manyama, Dec 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[(-1)^(n-k) k^(3n),{k,0,n}],{n,20}]] (* Harvey P. Dale, Apr 12 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k^(3*n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1+k^3*x)))

Formula

G.f.: Sum_{k>=0} (k^3 * x)^k/(1 + k^3 * x).
a(n) ~ 1/(1 + exp(-3)) * n^(3*n). - Vaclav Kotesovec, Dec 10 2021

A368466 a(n) = Sum_{k=0..n} 2^k * k^n.

Original entry on oeis.org

1, 2, 18, 250, 4810, 118458, 3557610, 126109562, 5153959338, 238596116794, 12340467941098, 705262375055610, 44135963944338474, 3001795007526424250, 220466095716711140202, 17389850740043552754298, 1466156761178169939270826, 131580021359494993268692026
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2023

Keywords

Crossrefs

Main diagonal of A368479.

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*k^n);

Formula

a(n) ~ 2^n * n^n / (1 - exp(-1)/2). - Vaclav Kotesovec, Dec 26 2023
Showing 1-10 of 11 results. Next