A089072
Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1
Triangle begins:
1;
1, 4;
1, 8, 27;
1, 16, 81, 256;
1, 32, 243, 1024, 3125;
1, 64, 729, 4096, 15625, 46656;
...
Related to triangle of Eulerian numbers
A008292.
-
a089072 = flip (^)
a089072_row n = map (a089072 n) [1..n]
a089072_tabl = map a089072_row [1..] -- Reinhard Zumkeller, Mar 18 2013
-
[k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
-
Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
-
flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022
More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
A038125
a(n) = Sum_{k=0..n} (k-n)^k.
Original entry on oeis.org
1, 1, 0, 0, 1, -1, 0, 6, -19, 29, 48, -524, 2057, -3901, -9632, 129034, -664363, 1837905, 2388688, -67004696, 478198545, -1994889945, 1669470784, 56929813934, -615188040195, 3794477505573, -12028579019536, -50780206473220
Offset: 0
Jim Ferry (jferry(AT)alum.mit.edu)
0^0 = 1,
1^0 - 0^1 = 1,
2^0 - 1^1 + 0^2 = 0,
3^0 - 2^1 + 1^2 - 0^3 = 0,
...
-
Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ Seiichi Manyama, Dec 02 2021
-
a(n) = sum(k=0, n, (k-n)^k); \\ Michel Marcus, Dec 03 2021
A349884
Expansion of Sum_{k>=0} (k * x)^k/(1 + k^2 * x).
Original entry on oeis.org
1, 1, 3, 12, 76, 961, 15407, 221528, 3260936, 80774113, 2462081967, 50963779604, 922244742292, 61063845514113, 2868669700179871, 2019727494212912, -47889136910252848, 461395118866593115713, 5781219348638565771423, -2108738296748190078596084
Offset: 0
-
a[n_] := Sum[If[k == 2*n - k == 0, 1, (-1)^(n - k) * k^(2*n - k)], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 04 2021 *)
-
a(n, t=2) = sum(k=0, n, (-k^t)^(n-k)*k^k);
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k^2*x)))
A349889
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(2*n).
Original entry on oeis.org
1, 1, 15, 666, 59230, 8775075, 1948891581, 605698755508, 250914820143996, 133610836793706405, 88919025666286620475, 72317513878698256697166, 70571883548815735717843290, 81383769918571603591381635271
Offset: 0
-
Join[{1},Table[Sum[(-1)^(n-k) k^(2n),{k,0,n}],{n,20}]] (* Harvey P. Dale, Nov 19 2023 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k^(2*n));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1+k^2*x)))
A349891
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(k*n).
Original entry on oeis.org
1, 0, 16, 19619, 4294436111, 298022124379673232, 10314423867168242405282727694, 256923577039829077600620024397823949901879, 6277101735175093150055816289268196664555481440709896684157
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*k^(k*n));
-
my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k^k^2*x^k/(1+k^k*x)))
A091884
Triangle of numbers defined by Knuth.
Original entry on oeis.org
1, 1, 1, 4, 3, 3, 27, 19, 20, 20, 256, 175, 191, 190, 190, 3125, 2101, 2344, 2312, 2313, 2313, 46656, 31031, 35127, 34398, 34462, 34461, 34461, 823543, 543607, 621732, 605348, 607535, 607407, 607408, 607408, 16777216, 11012415, 12692031, 12301406, 12366942, 12360381, 12360637, 12360636, 12360636
Offset: 0
Triangle begins:
1;
1, 1;
4, 3, 3;
27, 19, 20, 20;
256, 175, 191, 190, 190;
3125, 2101, 2344, 2312, 2313, 2313;
...
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.4 Answer to Exer. 46.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
-
T(n,k)=if(k<0 || k>n,0,sum(j=0,k,(-1)^j*(n-j)^n))
A332627
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022
A349885
Expansion of Sum_{k>=0} (k * x)^k/(1 + k^3 * x).
Original entry on oeis.org
1, 1, 3, -4, -218, 4377, 189549, -13317056, -283835940, 117015022505, -5604964950389, -1791024716075124, 422751913131376674, 8850160172208790801, -30082452518043880807911, 7173002090013176579439392, 1556433498641034120823054072
Offset: 0
-
a[n_] := Sum[If[k == 3*n - 2*k == 0, 1, (-1)^(n - k) * k^(3*n - 2*k)], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Dec 04 2021 *)
-
a(n, t=3) = sum(k=0, n, (-k^t)^(n-k)*k^k);
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k^3*x)))
A349902
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(3*n).
Original entry on oeis.org
1, 1, 63, 19172, 16249870, 29458152441, 97813591721181, 537081363012854224, 4535464309375188976956, 55796581668379082029481225, 958824462567528346234944706075, 22255431432328421226838750870120356, 678866987929798923743810982299237129610
Offset: 0
-
Join[{1},Table[Sum[(-1)^(n-k) k^(3n),{k,0,n}],{n,20}]] (* Harvey P. Dale, Apr 12 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k^(3*n));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1+k^3*x)))
A368466
a(n) = Sum_{k=0..n} 2^k * k^n.
Original entry on oeis.org
1, 2, 18, 250, 4810, 118458, 3557610, 126109562, 5153959338, 238596116794, 12340467941098, 705262375055610, 44135963944338474, 3001795007526424250, 220466095716711140202, 17389850740043552754298, 1466156761178169939270826, 131580021359494993268692026
Offset: 0
Showing 1-10 of 11 results.
Comments