A259835
a(n) is the number of odd primes of the form b^(2^n)+1 that are less than A123599(n+1).
Original entry on oeis.org
1, 1, 1, 1, 41, 152, 122, 185, 8, 860, 24, 612, 97094
Offset: 0
To find a(5), find all primes b^32 + 1 until you reach a base b that is a perfect square. In this case you find 152 nonsquare b values { 30, 54, 96, 112, ..., 10396 }, but the 153rd b is 10404, a perfect square. So 10404^32 + 1 = 102^64 + 1 belongs to the next family. Therefore a(5)=152.
-
b=2;for(n=0,100,x=0;until(,if(ispseudoprime(b^(2^n)+1),if(issquare(b,&b),break,x++));b+=2);print("a(",n,")=",x,", next b is ",b))
A078303
Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.
Original entry on oeis.org
7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
Offset: 0
a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2;
a(1) = 6^2+1 = 37 = 5*(7)+2;
a(2) = 6^4+1 = 1297 = 5*(7*37)+2;
a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2;
a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2;
a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=6).
- Wilfrid Keller, GFN06 factoring status.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Cf.
A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf.
A019434 (Fermat primes of the form 2^(2^n) + 1).
Cf.
A123669,
A123599,
A056993,
A126032,
A178428,
A059919,
A199591,
A078304,
A152581,
A080176,
A199592,
A152585.
A111635
Smallest prime of the form x^(2^n) + y^(2^n) where x,y are distinct integers.
Original entry on oeis.org
2, 5, 17, 257, 65537, 3512911982806776822251393039617, 4457915690803004131256192897205630962697827851093882159977969339137, 1638935311392320153195136107636665419978585455388636669548298482694235538906271958706896595665141002450684974003603106305516970574177405212679151205373697500164072550932748470956551681
Offset: 0
Original entry on oeis.org
3, 5, 17, 257, 65537
Offset: 1
a(1) = 1^1 + 2^1 = 3.
a(2) = 1^2 + 2^2 = 5.
a(3) = 1^4 + 2^4 = 17.
a(4) = 1^8 + 2^8 = 257.
a(5) = 1^16 + 2^16 = 65537.
a(6) = 1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379.
-
lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,s];Print[Date[],s]],{n, 4!}],{x,7!}];lst
A164312
Numbers n such that k^n + (k-1)^n + ... + 3^n + 2^n + 1 is prime for some k.
Original entry on oeis.org
1, 2, 4, 8, 16, 1440
Offset: 1
1^1 + 2^1 = 3 is prime (k = 2).
1^2 + 2^2 = 5 is prime (k = 2).
1^4 + 2^4 = 17 is prime (k = 2).
1^8 + 2^8 = 257 is prime (k = 2).
1^16 + 2^16 = 65537 is prime (k = 2).
1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379 is prime (k = 5).
-
lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,x];Print[Date[],x]],{n,4!}],{x,7!}];lst
-
a(n)=for(k=1,10^3,if(ispseudoprime(sum(i=1,k,i^n)),return(k)))
n=1;while(n<5000,if(a(n),print1(n,", "));n++) \\ Derek Orr, Jun 06 2014
Definition improved by
Derek Orr, Jun 06 2014
Showing 1-5 of 5 results.
Comments