A063983 Least k such that k*2^n +/- 1 are twin primes.
4, 2, 1, 9, 12, 6, 3, 9, 57, 30, 15, 99, 165, 90, 45, 24, 12, 6, 3, 69, 132, 66, 33, 486, 243, 324, 162, 81, 90, 45, 345, 681, 585, 375, 267, 426, 213, 429, 288, 144, 72, 36, 18, 9, 147, 810, 405, 354, 177, 1854, 927, 1125, 1197, 666, 333, 519, 1032, 516, 258, 129, 72
Offset: 0
Keywords
Examples
a(3) = 9 because 9*2^3 = 72 and 71 and 73 are twin primes. a(6) = 3 because 3*2^6 = 192 and {191, 193} are twin primes. a(71) = 630 because 630*2^71 = 1487545442103938242314240 and {1487545442103938242314239, 1487545442103938242314241} are twin primes.
References
- Richard Crandall and Carl Pomerance, 'Prime Numbers: A Computational Perspective,' Springer-Verlag, NY, 2001, page 12.
Links
- Pierre CAMI, Table of n, a(n) for n = 0..2300
Crossrefs
Programs
-
Mathematica
Table[Do[s=(2^j)*k; If[PrimeQ[s-1]&&PrimeQ[s+1],Print[{j,k}]], {k,1,2*j^2}],{j,0,100}]; (* outprint of a[j]=k *) Do[ k = 1; While[ ! PrimeQ[ k*2^n + 1 ] || ! PrimeQ[ k*2^n - 1 ], k++ ]; Print[ k ], {n, 0, 50} ] f[n_] := Block[{k = 1},While[Nand @@ PrimeQ[{-1, 1} + 2^n*k], k++ ];k];Table[f[n], {n, 0, 60}] (* Ray Chandler, Jan 09 2009 *)
Extensions
More terms from Labos Elemer, May 24 2002
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Comments