cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A124518 Numbers k such that 10k-1 and 10k+1 are twin primes.

Original entry on oeis.org

3, 6, 15, 18, 24, 27, 42, 57, 60, 66, 81, 102, 105, 123, 129, 132, 162, 195, 213, 231, 234, 255, 273, 279, 297, 300, 312, 330, 333, 336, 339, 354, 393, 402, 405, 423, 426, 465, 480, 501, 510, 528, 552, 564, 585, 588, 609, 627, 630, 636, 645, 657, 666, 669, 678
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Comments

All terms are divisible by 3. - Robert Israel, Apr 07 2019

Crossrefs

Programs

  • Maple
    select(t -> isprime(10*t+1) and isprime(10*t-1), [seq(i,i=3..1000,3)]); # Robert Israel, Apr 07 2019
  • Mathematica
    Select[Range[678], And @@ PrimeQ[{-1, 1} + 10# ] &] (* Ray Chandler, Nov 16 2006 *)

A124065 Numbers k such that 8*k - 1 and 8*k + 1 are twin primes.

Original entry on oeis.org

9, 24, 30, 39, 54, 75, 129, 144, 165, 186, 201, 234, 261, 264, 324, 336, 339, 375, 390, 396, 420, 441, 459, 471, 516, 534, 600, 621, 654, 660, 690, 705, 735, 795, 819, 849, 870, 891, 936, 945, 1011, 1029, 1125, 1155, 1179, 1215, 1221, 1251, 1284, 1395, 1419
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			9 is in the sequence since 8*9 - 1 = 71 and 8*9 + 1 = 73 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(8*n+1) and IsPrime(8*n-1)] // Vincenzo Librandi, Mar 08 2010
    
  • Mathematica
    Select[Range[1500], And @@ PrimeQ[{-1, 1} + 8# ] &] (* Ray Chandler, Nov 16 2006 *)
  • Python
    from sympy import isprime
    def ok(n): return isprime(8*n - 1) and isprime(8*n + 1)
    print(list(filter(ok, range(1420)))) # Michael S. Branicky, Sep 24 2021

Extensions

Extended by Ray Chandler, Nov 16 2006

A135368 a(n) = (nextprime(12*n) - previousprime(12*n))/2.

Original entry on oeis.org

1, 3, 3, 3, 1, 1, 3, 4, 1, 7, 3, 5, 3, 3, 1, 1, 6, 6, 1, 1, 3, 3, 3, 5, 7, 1, 7, 3, 1, 4, 3, 3, 4, 4, 1, 1, 3, 4, 6, 4, 4, 3, 6, 9, 9, 5, 3, 3, 3, 1, 3, 6, 5, 3, 1, 6, 4, 5, 4, 4, 3, 4, 3, 4, 7, 5, 6, 5, 1, 7, 7, 7, 7, 10, 10, 4, 5, 4, 3, 7, 3, 4, 3, 6, 1, 1, 5, 5, 3, 9, 1, 3, 4, 3, 11, 1, 4, 5, 3, 4, 6, 3, 3, 6
Offset: 1

Views

Author

Zak Seidov, Feb 17 2008

Keywords

Comments

a(n)=1 if 12n -/+ 1 are twin primes. Corresponding n's are in A124519: 1,5,6,9,15,16,19,20,26,29,35,36,50,...

Crossrefs

Programs

  • Mathematica
    Table[ ( NextPrime[12*n, 1] - NextPrime[12*n, -1] )/2, {n, 1, 25}] (* G. C. Greubel, Oct 11 2016 *)
  • PARI
    a(n) = (nextprime(12*n) - precprime(12*n))/2; \\ Michel Marcus, Oct 12 2016

A137877 Numbers k such that 18*k - 1 and 18*k + 1 are twin primes.

Original entry on oeis.org

1, 4, 6, 10, 11, 15, 24, 29, 45, 46, 49, 59, 64, 71, 90, 104, 111, 116, 119, 126, 130, 144, 155, 165, 176, 181, 185, 196, 199, 204, 214, 225, 231, 235, 241, 249, 251, 266, 274, 276, 279, 301, 314, 319, 325, 326, 350, 364, 365, 370, 386, 396, 406, 416, 420, 431
Offset: 1

Views

Author

Zak Seidov, Feb 19 2008

Keywords

Examples

			1 is in the sequence since 18*1 - 1 = 17 and 18*1 + 1 = 19 are twin primes.
		

Crossrefs

Programs

A124520 Numbers k such that 14*k - 1 and 14*k + 1 are twin primes.

Original entry on oeis.org

3, 30, 33, 63, 75, 78, 93, 102, 123, 138, 153, 162, 165, 192, 195, 240, 252, 273, 297, 303, 342, 387, 393, 420, 435, 438, 450, 468, 483, 522, 525, 540, 588, 630, 633, 660, 663, 717, 738, 747, 750, 765, 798, 825, 837, 855, 957, 978, 993, 1023, 1032, 1062
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			3 is in the sequence since 14*3 - 1 = 41 and 14*3 + 1 = 43 are twin primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100], And @@ PrimeQ[{-1, 1} + 14# ] &] (* Ray Chandler, Nov 16 2006 *)

Extensions

Extended by Ray Chandler, Nov 16 2006

A124521 Numbers k such that 16*k - 1 and 16*k + 1 are twin primes.

Original entry on oeis.org

12, 15, 27, 72, 93, 117, 132, 162, 168, 195, 198, 210, 258, 267, 300, 327, 330, 345, 435, 468, 642, 765, 813, 855, 903, 912, 960, 978, 993, 1128, 1143, 1182, 1290, 1350, 1353, 1365, 1392, 1398, 1440, 1632, 1680, 1713, 1737, 1797, 1848, 1860, 1947, 1953, 1962
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			12 is in the sequence since 16*12 - 1 = 191 and 16*12 + 1 = 193 are twin primes.
		

Crossrefs

Programs

  • Maple
    A124521:=n->`if`(isprime(16*n-1) and isprime(16*n+1), n, NULL): seq(A124521(n), n=1..2000); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Select[Range[2000], And @@ PrimeQ[{-1, 1} + 16# ] &] (* Ray Chandler, Nov 16 2006 *)

Extensions

Extended by Ray Chandler, Nov 16 2006

A137876 a(n) = (nextprime(18n)-previousprime(18n))/2.

Original entry on oeis.org

1, 3, 3, 1, 4, 1, 7, 5, 3, 1, 1, 6, 3, 3, 1, 5, 7, 7, 5, 4, 3, 4, 5, 1, 4, 6, 4, 3, 1, 9, 3, 3, 3, 3, 6, 3, 6, 4, 4, 4, 3, 3, 7, 5, 1, 1, 7, 7, 1, 10, 4, 4, 7, 3, 4, 6, 5, 5, 1, 9, 3, 4, 11, 1, 4, 3, 6, 3, 6, 9, 1, 3, 6, 17, 17, 3, 9, 5, 7, 4, 3, 5, 3, 6, 4, 3, 4, 7, 3, 1, 10, 10, 12, 12, 6, 5, 3, 9, 3, 6, 6
Offset: 1

Views

Author

Zak Seidov, Feb 19 2008

Keywords

Comments

a(n)=1 if 18n -/+ 1 are twin primes. Corresponding n's are in A137877.
Note that a(n) cannot be 2 (because, for arbitrary number m, if (6*m-1) is prime then (6*m+3) is not, and similarly, if (6*m+1) is prime then (6*m-3) is not). I conjecture that all other values are possible and a(n) == 0 (mod 3) are (much) more abundant.

Crossrefs

Programs

  • Magma
    [(NextPrime(18*n)-PreviousPrime(18*n))/2: n in [1..100]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    seq((nextprime(18*n)-prevprime(18*n))/2, n=1..100); # Robert Israel, Apr 19 2015
  • Mathematica
    Table[(NextPrime[18 n] - NextPrime[18 n, -1]) / 2, {n, 100}] (* Vincenzo Librandi, Apr 19 2015 *)
  • PARI
    a(n) = (nextprime(18*n) - precprime(18*n))/2; \\ Michel Marcus, Oct 13 2013
    

A137920 Numbers k such that 24*k-1 and 24*k+1 are twin primes.

Original entry on oeis.org

3, 8, 10, 13, 18, 25, 43, 48, 55, 62, 67, 78, 87, 88, 108, 112, 113, 125, 130, 132, 140, 147, 153, 157, 172, 178, 200, 207, 218, 220, 230, 235, 245, 265, 273, 283, 290, 297, 312, 315, 337, 343, 375, 385, 393, 405, 407, 417, 428, 465, 473, 493, 503, 510, 542
Offset: 1

Views

Author

Zak Seidov, Feb 23 2008

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..600] | IsPrime(24*n+1) and IsPrime(24*n-1)] // Vincenzo Librandi, Feb 12 2018
  • Maple
    select(t -> isprime(24*t-1) and isprime(24*t+1), [$1..1000]); # Robert Israel, Feb 11 2018
  • Mathematica
    q=24; lst={}; Do[r=n*q; If[PrimeQ[r-1]&&PrimeQ[r+1], AppendTo[lst, n]], {n, 1, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
    Select[Range[600], PrimeQ[24 # - 1] && PrimeQ[24 # + 1] &] (* Vincenzo Librandi, Feb 12 2018 *)
  • PARI
    isok(k) = isprime(24*k-1) && isprime(24*k+1); \\ Michel Marcus, Feb 12 2018
    

A137919 (Nextprime(24n)-previousprime(24n))/2.

Original entry on oeis.org

3, 3, 1, 4, 7, 5, 3, 1, 6, 1, 3, 5, 1, 3, 4, 3, 4, 1, 4, 4, 3, 9, 5, 3, 1, 6, 3, 6, 5, 4, 4, 4, 5, 5, 7, 7, 10, 4, 4, 7, 4, 6, 1, 5, 9, 3, 3, 1, 5, 4, 3, 6, 9, 3, 1, 17, 3, 9, 7, 4, 6, 1, 6, 6, 4, 7, 1, 5, 10, 12, 5, 5, 3, 9, 6, 4, 7, 1, 6, 9, 8, 11, 3, 3, 7, 3, 1, 1, 3, 4, 12, 3, 8, 8, 4, 6, 11, 3, 3, 6, 7, 6
Offset: 1

Views

Author

Zak Seidov, Feb 23 2008

Keywords

Comments

a(n)=1 if 24n -/+ 1 are twin primes.
Corresponding n's are in A137920.

Crossrefs

Programs

  • Mathematica
    Table[(NextPrime[24n]-NextPrime[24n,-1])/2,{n,110}] (* Harvey P. Dale, Apr 15 2015 *)
  • PARI
    a(n) = (nextprime(24*n) - precprime(24*n))/2; \\ Michel Marcus, Oct 13 2013

A174372 Numbers k such that 12*k - 5, 12*k - 1, 12*k + 1, and 12*k + 5 are primes.

Original entry on oeis.org

1, 9, 19, 26, 91, 119, 124, 156, 224, 399, 436, 471, 569, 691, 1141, 1311, 1339, 1349, 1449, 1619, 1729, 1969, 2009, 2616, 2779, 2961, 3001, 3166, 3369, 3649, 3689, 6641, 6834, 7191, 7401, 7544, 7791, 7924, 8426, 8461, 9214, 9291, 9429, 9431, 9744
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2010

Keywords

Examples

			1 is a term because 1*12-5=7, 1*12-1=11, 1*12+1=13, and 1*12+5=17 are all prime.
		

Crossrefs

Cf. A124519.

Programs

  • Mathematica
    Select[Range[10^4], AllTrue[12# + {-5, -1, 1, 5}, PrimeQ] &] (* Amiram Eldar, Dec 17 2019 *)

Extensions

Extended by Charles R Greathouse IV, Mar 18 2010
Showing 1-10 of 12 results. Next