cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059738 Binomial transform of A054341 and inverse binomial transform of A049027.

Original entry on oeis.org

1, 3, 10, 34, 117, 405, 1407, 4899, 17083, 59629, 208284, 727900, 2544751, 8898873, 31125138, 108881166, 380928795, 1332824049, 4663705782, 16319702046, 57109857519, 199859075307, 699435489795, 2447823832671, 8566818534141, 29982268505595, 104933418068332
Offset: 0

Views

Author

John W. Layman, Feb 09 2001

Keywords

Comments

First column of the Riordan array ((1-2x)/(1+x+x^2),x/(1+x+x^2))^(-1). [Paul Barry, Nov 06 2008]
Apparently the Motzkin transform of A125176, supposed A125176 is interpreted with offset 0. [R. J. Mathar, Dec 11 2008]
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors. Example: a(3)=34 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 1 path of shape UHD. - Emeric Deutsch, May 02 2011

Programs

  • Mathematica
    Table[SeriesCoefficient[2/(1-5*x+Sqrt[1-2*x-3*x^2]),{x,0,n}],{n,0,20}]
  • PARI
    x='x+O('x^66); Vec(2/(1-5*x+sqrt(1-2*x-3*x^2))) \\ Joerg Arndt, May 06 2013

Formula

a(n) = Sum[k=0..n, 2^(n-k)*A026300(n, k) ], where A026300 is the Motzkin triangle. - Ralf Stephan, Jan 25 2005 [Corrected by Philippe Deléham, Nov 29 2009]
a(n)= A126954(n,0). [Philippe Deléham, Nov 24 2009]
G.f.: 2/(1-5*x+sqrt(1-2*x-3*x^2)). - Emeric Deutsch, May 02 2011
Recurrence: 2*(n+1)*a(n) = (11*n+5)*a(n-1) - (8*n+5)*a(n-2) - 21*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ 3*7^n/2^(n+2). - Vaclav Kotesovec, Oct 11 2012
G.f.: 1/(1 - 3*x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021

Extensions

More terms from Vincenzo Librandi, May 06 2013

A047355 Numbers that are congruent to {0, 3} mod 7.

Original entry on oeis.org

0, 3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 122, 126, 129, 133, 136, 140, 143, 147, 150, 154, 157, 161, 164, 168, 171, 175, 178, 182, 185, 189, 192, 196, 199, 203
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k^2/7 + k*(k + 1)/7 = k*(2*k + 1)/7 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Cf. A030123, A010702 (first differences).

Programs

Formula

a(n) = a(n-2) + 7 = a(n-1) + a(n-2) - a(n-3). - Henry Bottomley, Jan 19 2001
From Bruno Berselli, Sep 12 2011: (Start)
G.f.: x^2*(3 + 4*x)/((1 + x)*(1 - x)^2).
a(n) = (14*n - (-1)^n - 15)/4. (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A125176(k+2). - Philippe Deléham, Oct 17 2011
a(n) = 2*n - 2 + floor((3*n - 3)/2). - Wesley Ivan Hurt, Jan 30 2014
E.g.f.: 4 + ((14*x - 15)*exp(x) - exp(-x))/4. - David Lovler, Aug 31 2022

A135092 Binomial transform of [1, 6, 1, 6, 1, 6, ...].

Original entry on oeis.org

1, 7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384, 7516192768, 15032385536
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Examples

			a(3) = (1, 3, 3, 1) dot (1, 6, 1, 6) = (1 + 18 + 3 + 6) = 28 = 7*2^2.
		

Crossrefs

Essentially identical to A005009 and to A125176.

Programs

  • Mathematica
    Join[{1},NestList[2#&,7,50]] (* Harvey P. Dale, Aug 30 2015 *)

Formula

a(n) = 7*2^(n-1) for n>0, a(0)=1.
a(n) = Sum_{k=0..n} A097805(n,k)*7^k*(-5)^(n-k). - Philippe Deléham, Nov 19 2007
G.f.: (1+5*x)/(1-2*x). - Bruno Berselli, Sep 20 2011
E.g.f.: (1/2)*(7*exp(2*x) - 5). - G. C. Greubel, Sep 22 2016
a(n) = A125176(n+2) for n >= 1. - Georg Fischer, Nov 02 2018

Extensions

Corrected and extended by Philippe Deléham and N. J. A. Sloane, Dec 15 2007

A125175 Triangle T(n,k) = |A053123(n/2+k/2,k)| for even n+k, T(n,k)= A082985((n+k-1)/2,k) for odd n+k; read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 10, 7, 5, 1, 6, 14, 20, 9, 6, 1, 7, 21, 30, 35, 11, 7, 1, 8, 27, 56, 55, 56, 13, 8, 1, 9, 36, 77, 126, 91, 84, 15, 9, 1, 10, 44, 120, 182, 252, 140, 120, 17, 10, 1, 11, 55, 156, 330, 378, 462, 204, 165, 19, 11
Offset: 0

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 3,  3;
  1, 4,  5,  4;
  1, 5, 10,  7,   5;
  1, 6, 14, 20,   9,  6;
  1, 7, 21, 30,  35, 11,  7;
  1, 8, 27, 56,  55, 56, 13,  8;
  1, 9, 36, 77, 126, 91, 84, 15, 9; ...
		

Crossrefs

Cf. A053123, A082985, A125176 (row sums).

Programs

  • Magma
    [[ k eq n select n+1 else (n+k mod 2) eq 0 select Binomial(n+1,k) else Binomial(n-1, k)*(n+k)/(n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    A125175 := proc(n,k)
            if type(n+k,'even') then
                    binomial(n+1,k) ;
            else
                    binomial(n-1,k)*(n+k)/(n-k) ;
            end if;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    Table[If[EvenQ[n+k], Binomial[n+1, k], Binomial[n-1, k]*(n+k)/(n-k)], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if((n+k)%2==0, binomial(n+1,k), binomial(n-1, k)* (n+k)/(n-k))}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (mod(n+k,2)==0): return binomial(n+1,k)
        else: return binomial(n-1, k)* (n+k)/(n-k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 05 2019

Formula

T(n,k) = binomial(n+1,k) if n+k even. T(n,k) = binomial(n-1,k)*(n+k)/(n-k) if n+k odd. - R. J. Mathar, Sep 08 2013
Showing 1-4 of 4 results.