cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A126646 a(n) = 2^(n+1) - 1.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647
Offset: 0

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007, Feb 13 2007

Keywords

Comments

a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4,5,6 and 7 and at least one of the digits 8,9.
Partial sums of the powers of 2 (A000079).
a(n) is the number of elements (all m-dimensional faces) in an n-dimensional simplex (0 <= m <= n). - Sergey Pavlov, Aug 15 2015
A261461(a(n)) != A261922(a(n)). - Reinhard Zumkeller, Sep 17 2015
a(n) is the total number of matches in a knockout tournament with 2^n players. - Paul Duckett, Dec 12 2022

Examples

			a(8) = 2^9 - 1 = 511.
		

Crossrefs

Programs

Formula

a(n-1)^2 + a(n) = a(2n) + 1, a square. - Vincenzo Librandi and Ralf Stephan, Nov 23 2010
G.f.: 1/ ( (1-2*x)*(1-x) ). - R. J. Mathar, Dec 02 2013
a(n) = 3*a(n-1) - 2*a(n-2), n > 1. - Wesley Ivan Hurt, Aug 21 2015
E.g.f.: 2*exp(2*x) - exp(x). - G. C. Greubel, Mar 31 2021

A126644 a(n) = 3*3^n - 3*2^n + 1.

Original entry on oeis.org

4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Comments

Previous name was: a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4,5,6 and at least one of digits 7,8,9.
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x, 1) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 2) x equals y. Then a(n) = |R|. [Ross La Haye, Mar 19 2009]

Examples

			a(8) = 18916.
		

Crossrefs

Programs

  • Maple
    f:=n->3*3^n-3*2^n+1;
  • Mathematica
    LinearRecurrence[{6,-11,6},{4,16,58},30] (* Harvey P. Dale, Sep 14 2018 *)
  • PARI
    a(n) = 3*3^n - 3*2^n + 1; \\ Michel Marcus, Nov 30 2015

Formula

a(n) = 3*3^n - 3*2^n + 1.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). G.f.: -2*x*(3*x^2-4*x+2) / ((x-1)*(2*x-1)*(3*x-1)). [Colin Barker, Dec 10 2012]
a(n) = 3*A001047(n) + 1. - Hugo Pfoertner, Nov 22 2022

Extensions

New name from Hugo Pfoertner, Nov 22 2022

A126645 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4 and 5, at least one of digits 6,7 and at least one of digits 8,9.

Original entry on oeis.org

5, 21, 77, 261, 845, 2661, 8237, 25221, 76685, 232101, 700397, 2109381, 6344525, 19066341, 57264557, 171924741, 516036365, 1548633381, 4646948717, 13942943301, 41833024205, 125507461221, 376539160877, 1129651037061, 3389020220045, 10167194877861
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->4*3^n-4*2^n+1;
  • PARI
    Vec(-x*(6*x^2-9*x+5)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 4*3^n-4*2^n+1.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). - Colin Barker, Feb 22 2015
G.f.: -x*(6*x^2-9*x+5) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Feb 22 2015

A126639 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1,2,3, at least one of digits 4,5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

7, 49, 331, 2137, 13147, 77449, 440251, 2432857, 13151707, 69895849, 366600571, 1903222777, 9802234267, 50171448649, 255545887291, 1296626911897, 6559153748827, 33101134543849, 166731005404411, 838567970940217, 4212526479343387, 21141483461069449
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->9*5^n-18*4^n+15*3^n-6*2^n+1;
  • Mathematica
    LinearRecurrence[{15,-85,225,-274,120},{7,49,331,2137,13147},30] (* Harvey P. Dale, Aug 12 2015 *)
  • PARI
    Vec(-x*(120*x^4-238*x^3+191*x^2-56*x+7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 9*5^n-18*4^n+15*3^n-6*2^n+1.
G.f.: -x*(120*x^4-238*x^3+191*x^2-56*x+7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Feb 22 2015

A126640 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1 and 2, at least one of digits 3,4, at least one of digits 5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

8, 60, 422, 2784, 17318, 102600, 584942, 3237504, 17516438, 93136440, 488625662, 2537103024, 13068059558, 66890498280, 340713533582, 1728792901344, 8745409322678, 44134458900120, 222306845468702, 1118087142184464, 5616691514201798, 28188613237893960
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->12*5^n-24*4^n+19*3^n-7*2^n+1;
  • Mathematica
    LinearRecurrence[{15,-85,225,-274,120},{8, 60, 422, 2784, 17318},22] (* James C. McMahon, Dec 26 2024 *)
  • PARI
    Vec(-2*x*(60*x^4-123*x^3+101*x^2-30*x+4) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 12*5^n-24*4^n+19*3^n-7*2^n+1.
G.f.: -2*x*(60*x^4-123*x^3+101*x^2-30*x+4) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Feb 22 2015

A126641 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5, at least one of digits 6,7 and at least one of digits 8,9.

Original entry on oeis.org

9, 73, 537, 3625, 22809, 135913, 777177, 4308265, 23329689, 124104553, 651267417, 3382100905, 17421964569, 89180975593, 454265623257, 2304999893545, 11660373751449, 58845428989033, 296407578308697, 1490778208598185, 7488908074594329, 37584775814704873
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->16*5^n-32*4^n+24*3^n-8*2^n+1;
  • PARI
    Vec(-x*(120*x^4-250*x^3+207*x^2-62*x+9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 16*5^n-32*4^n+24*3^n-8*2^n+1.
G.f.: -x*(120*x^4-250*x^3+207*x^2-62*x+9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Feb 22 2015

A126642 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4 and 5 and at least one of digits 6,7,8,9.

Original entry on oeis.org

5, 25, 125, 601, 2765, 12265, 52925, 223801, 932525, 3844105, 15722525, 63936601, 258902285, 1045109545, 4209004925, 16921851001, 67945160045, 272554432585, 1092540156125, 4377129999001, 17529432313805, 70180474597225, 280910151192125
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->4*4^n-6*3^n+4*2^n-1;
  • PARI
    Vec(-x*(24*x^3-50*x^2+25*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 4*4^n-6*3^n+4*2^n-1.
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -x*(24*x^3-50*x^2+25*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015

A126643 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4, at least one of digits 5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

6, 34, 180, 886, 4116, 18334, 79260, 335446, 1398276, 5765134, 23581740, 95900806, 388345236, 1567647934, 6313474620, 25382710966, 101917608996, 408831386734, 1638809709900, 6565693949926, 26294146373556, 105270707701534, 421365218399580
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->6*4^n-9*3^n+5*2^n-1;
  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{6,34,180,886},30] (* Harvey P. Dale, Sep 12 2023 *)
  • PARI
    Vec(-2*x*(12*x^3-25*x^2+13*x-3) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 6*4^n-9*3^n+5*2^n-1.
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -2*x*(12*x^3-25*x^2+13*x-3) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015
Showing 1-8 of 8 results.