cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A064748 a(n) = n*10^n + 1.

Original entry on oeis.org

1, 11, 201, 3001, 40001, 500001, 6000001, 70000001, 800000001, 9000000001, 100000000001, 1100000000001, 12000000000001, 130000000000001, 1400000000000001, 15000000000000001, 160000000000000001, 1700000000000000001, 18000000000000000001, 190000000000000000001
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Comments

Number of digits in (10^n)^(10^n) in base 10. - Altug Alkan, Apr 25 2016

Crossrefs

Programs

Formula

From Ilya Gutkovskiy, Apr 25 2016: (Start)
O.g.f.: (1 - 10*x + 90*x^2)/((1 - x)*(1 - 10*x)^2).
E.g.f.: (1 + 10*x*exp(9*x))*exp(x). (End)
From Elmo R. Oliveira, May 03 2025: (Start)
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3).
a(n) = A126431(n) + 1. (End)

A064756 a(n) = n*10^n - 1.

Original entry on oeis.org

9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Cf. for a(n) = n*k^n - 1: -A000012 (k=0), A001477 (k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), this sequence (k=10), A064757 (k=11), A064758 (k=12).

Programs

  • Magma
    [ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
  • Mathematica
    Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)

Formula

From Elmo R. Oliveira, Sep 07 2024: (Start)
G.f.: x*(100*x^2 - 10*x - 9)/((x - 1)*(10*x - 1)^2).
E.g.f.: 1 + exp(x)*(10*x*exp(9*x) - 1).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n > 3.
a(n) = A126431(n) - 1 = A064748(n) - 2. (End)

A374641 Decimal expansion of log(9/10), negated.

Original entry on oeis.org

1, 0, 5, 3, 6, 0, 5, 1, 5, 6, 5, 7, 8, 2, 6, 3, 0, 1, 2, 2, 7, 5, 0, 0, 9, 8, 0, 8, 3, 9, 3, 1, 2, 7, 9, 8, 3, 0, 6, 1, 2, 0, 3, 7, 2, 9, 8, 3, 2, 7, 4, 0, 7, 2, 5, 6, 3, 9, 3, 9, 2, 3, 3, 6, 9, 2, 5, 8, 4, 0, 2, 3, 2, 4, 0, 1, 3, 4, 5, 4, 6, 4, 8, 8, 7, 6, 5, 6, 9, 5
Offset: 0

Views

Author

Paolo Xausa, Jul 15 2024

Keywords

Comments

Bailey et al. (1997) use Li_1(1/10) (see Formula section) to compute the ten billionth digit of this constant.
Bailey and Crandall (2001), p. 185, present this constant as an example of an irrational number that, provided their "Hypothesis A" (p. 176) is true, is normal to base 10.
Also decimal expansion of log(10/9). - Charles R Greathouse IV, Jul 17 2024

Examples

			0.105360515657826301227500980839312798306120372983...
		

Crossrefs

Programs

Formula

Equals Li_1(1/10) = Sum_{k >= 1} 1/(k*10^k), where Li_m(z) is the polylogarithm function. See Bailey et al. (1997), p. 909 and Bailey and Crandall (2001), p. 185.
Equals Integral_{x=0..1} (x^(1/3) - x^(1/5))/log(x) dx. - Kritsada Moomuang, May 27 2025

A081553 Sum of n-th row of A081551.

Original entry on oeis.org

1, 21, 303, 4006, 50010, 600015, 7000021, 80000028, 900000036, 10000000045, 110000000055, 1200000000066, 13000000000078, 140000000000091, 1500000000000105, 16000000000000120, 170000000000000136, 1800000000000000153, 19000000000000000171, 200000000000000000190, 2100000000000000000210, 22000000000000000000231
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*10^(n-1) +n(n-1)/2, {n,40}] (* G. C. Greubel, May 27 2021 *)
  • Sage
    [n*10^(n-1) +binomial(n,2) for n in (1..40)] # G. C. Greubel, May 27 2021

Formula

a(n) = n*10^(n-1) + n*(n-1)/2.
From G. C. Greubel, May 27 2021: (Start)
G.f.: x*(1 -2*x -17*x^2 +99*x^3)/((1-x)^3 * (1-10*x)^2).
E.g.f.: (1/2)*x*( x*exp(x) + 2*exp(10*x) ). (End)

Extensions

Terms a(13) onward added by G. C. Greubel, May 27 2021

A126435 Primes of the form n^7-n-1.

Original entry on oeis.org

2097143, 1801088519, 21869999969, 42618442943, 78364164059, 137231006639, 194754273839, 435817657169, 678223072799, 1174711139783, 1727094849479, 3938980639103, 4398046511039, 4902227890559, 6722988818363, 19203908986079
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

All terms end in 3 or 9. - Robert Israel, Jul 22 2019

Crossrefs

Programs

  • Maple
    map(t -> t^7-t-1, select(t -> isprime(t^7-t-1), [$1..10^4])); # Robert Israel, Jul 22 2019
  • Mathematica
    k = 7; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^7-n-1,{n,80}],PrimeQ] (* Harvey P. Dale, Jun 20 2020 *)

A126437 Primes of the form k^8-k-1.

Original entry on oeis.org

1679609, 5764793, 99999989, 4294967279, 282429536453, 377801998307, 5352009260441, 16815125390579, 39062499999949, 72301961339081, 83733937890569, 281474976710591, 513798374428571, 1113034787454899
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 8; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[k^8-k-1,{k,80}],PrimeQ] (* Harvey P. Dale, Nov 06 2021 *)

A158749 a(n) = n*9^n.

Original entry on oeis.org

0, 9, 162, 2187, 26244, 295245, 3188646, 33480783, 344373768, 3486784401, 34867844010, 345191655699, 3389154437772, 33044255768277, 320275094369454, 3088366981419735, 29648323021629456, 283512088894331673, 2701703435345984178, 25666182635786849691, 243153309181138576020
Offset: 0

Views

Author

Zerinvary Lajos, Mar 25 2009

Keywords

Crossrefs

Programs

Formula

a(n) = n*9^n.
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) = A038299(n,1).
G.f.: 9*x/(1-9*x)^2. (End)
a(n) = A001019(n)*n. - Omar E. Pol, Mar 26 2009
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(10/9). (End)
E.g.f.: 9*x*exp(9*x). - Elmo R. Oliveira, Sep 09 2024

A126438 Primes of the form n^9-n-1.

Original entry on oeis.org

509, 262139, 10077689, 387420479, 68719476719, 118587876479, 1207269217769, 7625597484959, 10578455953379, 129961739795039, 327381934393919, 1628413597910399, 1953124999999949, 5416169448144839, 10077695999999939
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 9; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^9-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, Mar 09 2016 *)

A126439 Least prime of the form x^n-x-1.

Original entry on oeis.org

5, 5, 13, 29, 61, 2097143, 1679609, 509, 1021, 8589934583, 4093, 67108859, 16381, 470184984569, 4294967291, 2218611106740436979, 68719476731, 1350851717672992079, 1048573, 10460353199, 4194301, 20013311644049280264138724244295359, 16777213, 108347059433883722041830239, 20282409603651670423947251285999, 58149737003040059690390159, 72057594037927931, 536870909, 999999999999999999999999999989
Offset: 2

Views

Author

Artur Jasinski, Dec 26 2006, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 2; While[ ! PrimeQ[k^n -k - 1], k++ ]; AppendTo[a, k^n - k - 1], {n, 2, 30}]; a (*Artur Jasinski*)
Showing 1-9 of 9 results.