A130883 a(n) = 2*n^2 - n + 1.
1, 2, 7, 16, 29, 46, 67, 92, 121, 154, 191, 232, 277, 326, 379, 436, 497, 562, 631, 704, 781, 862, 947, 1036, 1129, 1226, 1327, 1432, 1541, 1654, 1771, 1892, 2017, 2146, 2279, 2416, 2557, 2702, 2851, 3004, 3161, 3322, 3487, 3656, 3829, 4006, 4187, 4372, 4561
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA, 1994, pp. 7-8, and Problem 1.18, pages 19 and 500.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Kival Ngaokrajang, Illustration of irregular spirals (center points: 1, 2)
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- N. J. A. Sloane, Illustration for a(3) = 16
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a130883 = a128918 . (* 2) -- Reinhard Zumkeller, Oct 27 2013
-
Magma
[2*n^2 - n + 1 : n in [0..50]]; // Wesley Ivan Hurt, Mar 25 2020
-
Mathematica
a[n_]:=2*n^2-n+1; (* or *) Array[ -#*(1-#*2)+1&,5!,0] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) LinearRecurrence[{3,-3,1},{1,2,7},50] (* Harvey P. Dale, Jul 20 2011 *)
-
PARI
a(n)=2*n^2-n+1 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A130883(n): return n*(2*n - 1) + 1 # Chai Wah Wu, May 24 2022
Formula
a(n) = a(n-1) + 4*n - 3 for n > 0, a(0)=1. - Vincenzo Librandi, Nov 23 2010
a(n) = A000124(2*n) - 2*n. - Geoffrey Critzer, Mar 30 2011
O.g.f.: (4*x^2-x+1)/(1-x)^3. - Geoffrey Critzer, Mar 30 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Eric Werley, Jun 27 2011
a(0)=1, a(1)=2, a(2)=7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 20 2011
a(n) = A128918(2*n). - Reinhard Zumkeller, Oct 27 2013
a(n) = 1 + A000384(n). - Omar E. Pol, Apr 27 2017
E.g.f.: (2*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A152947(2*n+1). - Franck Maminirina Ramaharo, Jan 10 2018
Comments