cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A111958 Lucas numbers (A000032) mod 8.

Original entry on oeis.org

2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Comments

This sequence has period-length 12.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, {2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3}, 105] (* Ray Chandler, Aug 27 2015 *)
    Mod[LucasL[Range[0, 99]], 8] (* Alonso del Arte, Dec 19 2015 *)

Formula

From G. C. Greubel, Feb 08 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11).
a(n+12) = a(n). (End)

A141053 Most-significant decimal digit of Fibonacci(5n+3).

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

Leading digit of A134490(n).
From Johannes W. Meijer, Jul 06 2011: (Start)
The leading digit d, 1 <= d <= 9, of A141053 follows Benford’s Law. This law states that the probability for the leading digit is p(d) = log_10(1+1/d), see the examples.
We observe that the last digit of A134490(n), i.e. F(5*n+3) mod 10, leads to the Lucas sequence A000032(n) (mod 10), i.e. a repetitive sequence of 12 digits [2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9] with p(0) = p(5) = 0, p(1) = p(3) = p(7) = p(9) = 1/6 and p(2) = p(4) = p(6) = p(8) = 1/12. This does not obey Benford’s Law, which would predict that the last digit would satisfy p(d) = 1/10, see the links. (End)

Examples

			From _Johannes W. Meijer_, Jul 06 2011: (Start)
d     p(N=2000) p(N=4000) p(N=6000) p(Benford)
1      0.29900   0.29950   0.30033   0.30103
2      0.17700   0.17675   0.17650   0.17609
3      0.12550   0.12525   0.12517   0.12494
4      0.09650   0.09675   0.09700   0.09691
5      0.07950   0.07950   0.07933   0.07918
6      0.06700   0.06675   0.06700   0.06695
7      0.05800   0.05825   0.05800   0.05799
8      0.05150   0.05125   0.05100   0.05115
9      0.04600   0.04600   0.04567   0.04576
Total  1.00000   1.00000   1.00000   1.00000 (End)
		

Crossrefs

Cf. A000045 (F(n)), A008963 (Initial digit F(n)), A105511-A105519, A003893 (F(n) mod 10), A130893, A186190 (First digit tribonacci), A008952 (Leading digit 2^n), A008905 (Leading digit n!), A045510, A112420 (Leading digit Collatz 3*n+1 starting with 1117065), A007524 (log_10(2)), A104140 (1-log_10(9)). - Johannes W. Meijer, Jul 06 2011

Programs

  • Maple
    A134490 := proc(n) combinat[fibonacci](5*n+3) ; end proc:
    A141053 := proc(n) convert(A134490(n),base,10) ; op(-1,%) ; end proc:
    seq(A141053(n),n=0..70) ; # R. J. Mathar, Jul 04 2011
  • Mathematica
    Table[IntegerDigits[Fibonacci[5n+3]][[1]],{n,0,70}] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = floor(F(5*n+3)/10^(floor(log(F(5*n+3))/log(10)))). - Johannes W. Meijer, Jul 06 2011
For n>0, a(n) = floor(10^{alpha*n+beta}), where alpha=5*log_10(phi)-1, beta=log_10(1+2/sqrt(5)), {x}=x-floor(x) denotes the fractional part of x, log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 27 2025

Extensions

Edited by Johannes W. Meijer, Jul 06 2011

A268613 Lucas numbers mod 20.

Original entry on oeis.org

2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11, 18, 9, 7, 16, 3, 19, 2, 1, 3, 4, 7, 11
Offset: 0

Views

Author

G. C. Greubel, Feb 08 2016

Keywords

Comments

Sequence of period 12.
This is one of four sequences that are period 12 of the form Lucas[n] Mod x, where x is 8,10,20,40.

Crossrefs

Programs

  • Magma
    [Lucas(n) mod 20: n in [0..100]]; // Vincenzo Librandi, Feb 09 2016
  • Mathematica
    Table[Mod[LucasL[n],20],{n,0,100}]
    PadRight[{},120,{2,1,3,4,7,11,18,9,7,16,3,19}] (* Harvey P. Dale, Jul 06 2025 *)

Formula

a(n+12) = a(n).

A137976 Fibonacci numbers (A000045) not in A103311.

Original entry on oeis.org

3, 13, 34, 144, 377, 1597, 4181, 17711, 46368, 196418, 514229, 2178309, 5702887, 24157817
Offset: 1

Views

Author

Paul Curtz, May 01 2008

Keywords

Comments

Sequence of last digits: a(2n-1) mod 10 = a(2n) mod 10 = A130893(n). - Paul Curtz, May 07 2008

Extensions

Edited by N. J. A. Sloane, May 08 2008

A268615 Lucas numbers mod 40.

Original entry on oeis.org

2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11, 18, 29, 7, 36, 3, 39, 2, 1, 3, 4, 7, 11
Offset: 0

Views

Author

G. C. Greubel, Feb 08 2016

Keywords

Comments

This sequence is of period 12.
This is one of four sequences that are period 12 of the form Lucas[n] Mod x, where x is 8,10,20,40.

Crossrefs

Programs

  • Magma
    [Lucas(n) mod 40: n in [0..100]]; // Vincenzo Librandi, Feb 09 2016
  • Mathematica
    Table[Mod[LucasL[n],40], {n,0,100}]
    PadRight[{},120,{2,1,3,4,7,11,18,29,7,36,3,39}] (* Harvey P. Dale, Feb 04 2019 *)

Formula

a(n+12) = a(n).

A341414 a(n) = (Fibonacci(n)*Lucas(n)) mod 10.

Original entry on oeis.org

0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9
Offset: 0

Views

Author

Jens Rasmussen, Feb 11 2021

Keywords

Comments

Fibonacci starting with 0,1 and Lucas starting with 2,1.
Blocks of 30 numbers with 10 even and 20 uneven numbers.
Symmetric as a(7-i)=a(8+i) for i=1,2,...,6, and a(22-j)=a(23+j) for j=1..21.
Decimal expansion of 13801675776055042253380279/999000999000999000999000999. - Jianing Song, Apr 04 2021

Examples

			For n=5: a(5) = (Fibonacci(5)*Lucas(5)) mod 10 = (5*11) mod 10 = 55 mod 10 = 5.
		

Crossrefs

Bisection of A003893.

Programs

  • Mathematica
    Table[Mod[Fibonacci@n*LucasL@n, 10], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
  • PARI
    a(n) = fibonacci(2*(n%30)) % 10 \\ Jianing Song, Apr 04 2021

Formula

a(n) = (Fibonacci(n)*Lucas(n)) mod 10 = Fibonacci(2*n) mod 10 using Binet's formula for Fibonacci and corresponding formula for Lucas.
a(n) = a(n-30).
a(n) = a(n-3) - a(n-6) + a(n-9) - a(n-12) + a(n-15) - a(n-18) + a(n-21) - a(n-24) + a(n-27).
a(n) = A003893(2*n).

A262951 a(1) = 1, a(2) = 3, a(3) = 4 and for n>=4, a(n) = (a(n-3)+a(n-2)+a(n-1)+k) mod 10 where k = a(n/6) if n is divisible by 6, else 0.

Original entry on oeis.org

1, 3, 4, 8, 5, 7, 0, 2, 9, 1, 2, 5, 8, 5, 8, 1, 4, 7, 2, 3, 2, 7, 2, 9, 8, 9, 6, 3, 8, 2, 3, 3, 8, 4, 5, 4, 3, 2, 9, 4, 5, 8, 7, 0, 5, 2, 7, 6, 5, 8, 9, 2, 9, 9, 0, 8, 7, 5, 0, 3, 8, 1, 2, 1, 4, 9, 4, 7, 0, 1, 8, 4, 3, 5, 2, 0, 7, 7, 4, 8, 9, 1, 8, 3, 2, 3, 8
Offset: 1

Views

Author

Michel Marcus, Oct 05 2015

Keywords

Comments

This sequence is similar to A130893. Every term of index k is the sum of the 3 preceding terms modulo 10, except that for every sixth term the sum includes also the term of index k/6.
Lambert gave this sequence in Anlage zur Architectonic as a kind of early pseudorandom sequence. - Charles R Greathouse IV, Oct 05 2015

Examples

			a(6) = 4+8+5 = (17 + a(6/6)) mod 10 = (17 + 1) mod 10 = 8.
		

Crossrefs

Cf. A130893.

Programs

  • PARI
    lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 3; va[3] = 4; for (k=4, nn, va[k] = va[k-3] + va[k-2] + va[k-1]; if (! (k % 6) && (k > 6), va[k] += va[k/6]); va[k] = va[k] % 10;); va;}

Formula

a(n) = (a(n-3) + a(n-2) + a(n-1)) mod 10 if n is not a multiple of 6.
a(n) = (a(n-3) + a(n-2) + a(n-1) + a(n/6)) mod 10 if n is a multiple of 6.
Showing 1-7 of 7 results.