A134931 a(n) = (5*3^n-3)/2.
1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[(5*3^n-3)/2: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
Maple
seq((5*3^n-3)/2, n= 0..25); # Gary Detlefs, Jun 22 2010
-
Mathematica
a=1; lst={a}; Do[a=a*3+3; AppendTo[lst,a], {n,0,100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *) Table[(5 3^n - 9)/6, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *) (5 3^Range[20] - 9)/6 (* Eric W. Weisstein, Dec 01 2017 *) LinearRecurrence[{4, -3}, {1, 6}, 20] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
a(n) = (5*3^n-3)/2; /* Joerg Arndt, Apr 14 2013 */
Formula
a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008
Comments