cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134931 a(n) = (5*3^n-3)/2.

Original entry on oeis.org

1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020

Crossrefs

Programs

Formula

a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008