cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A374149 Decimal expansion of the minimum volume of an axis-aligned bounding box which includes the shortest minimum-link polygonal chain joining all the vertices of the cube {0,1}^3.

Original entry on oeis.org

5, 5, 4, 5, 0, 8, 4, 9, 7, 1, 8, 7, 4, 7, 3, 7, 1, 2, 0, 5, 1, 1, 4, 6, 7, 0, 8, 5, 9, 1, 4, 0, 9, 5, 2, 9, 4, 3, 0, 0, 7, 7, 2, 9, 4, 9, 5, 1, 4, 4, 0, 7, 1, 5, 5, 3, 3, 8, 6, 2, 1, 5, 5, 6, 7, 6, 3, 1, 5, 1, 1, 5, 7, 0, 4, 7, 2, 5, 6, 1, 2, 4, 2, 6, 8, 0, 1
Offset: 1

Views

Author

Marco Ripà, Jun 29 2024

Keywords

Comments

It has been proved that it is not possible to join the 8 vertices of a cube with a polygonal chain that has fewer than 6 edges (see Links, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, Theorem 2.2).
Here we are considering the additional constraint that asks to minimize the volume of the Axis-Aligned Bounding Box (AABB) including the above-mentioned optimal polygonal chain consisting of only 6 connected line segments and that joins all the vertices of the cube [0,1] X [0,1] X [0,1].
Given phi = (1+sqrt(5))/2, the well-known golden ratio (see A001622), a valid polygonal chain is (0, 1, 0)-(0, 0, 0)-((1+phi)/2, 0, (1+phi)/2)-(1/2, 1+phi, 1/2)-((1-phi)/2, 0, (1+phi)/2)-(1, 0, 0)-(1, 1, 0) (see Links, p. 164), and consequently the minimum volume AABB is [(1-phi)/2, (1+phi)/2] X [0, 1+phi] X [0, (1+phi)/2].
As noted by Hugo Pfoertner, the present sequence is also given by phi^5/2 (i.e., A244593/2).

Examples

			5.5450849718747371205114670859140952943...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(11+5*Sqrt[5])/4, 10, 100][[1]]

Formula

Equals phi*(1+phi)*((1+phi)/2), where phi := (1+sqrt(5))/2 is the golden ratio.
Equals (11+5*sqrt(5))/4.
Equals phi^5/2.
Equals 10*A134944 + 3/2.

A081009 a(n) = Fibonacci(4n+3) - 1, or Fibonacci(2n+2)*Lucas(2n+1).

Original entry on oeis.org

1, 12, 88, 609, 4180, 28656, 196417, 1346268, 9227464, 63245985, 433494436, 2971215072, 20365011073, 139583862444, 956722026040, 6557470319841, 44945570212852, 308061521170128, 2111485077978049, 14472334024676220, 99194853094755496
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A134944.

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+3)-1); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+3)-1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+3)-1) od # James Sellers, Mar 03 2003
  • Mathematica
    Fibonacci[4*Range[0,30] +3] -1 (* G. C. Greubel, Jul 14 2019 *)
    LinearRecurrence[{8,-8,1},{1,12,88},30] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    vector(30, n, n--; fibonacci(4*n+3)-1) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+3)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (1+4*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
Product_{n>=1} (1 - 1/a(n)) = (5+sqrt(5))/8 = A134944 + 1/2. - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003

A375803 a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(2*n-1) * Fibonacci(2*n+1).

Original entry on oeis.org

0, 20, 195, 4420, 72624, 1347905, 23877840, 430583140, 7712000835, 138485573876, 2484341814240, 44584372180225, 800002107309600, 14355674602647860, 257600625681170499, 4622465972012379940, 82946715695078486160, 1488418904383171787585, 26708590219470770907120
Offset: 1

Views

Author

Amiram Eldar, Aug 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n-1] * Fibonacci[n+1] * Fibonacci[2*n-1] * Fibonacci[2*n+1]; Array[a, 20]
  • PARI
    a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(2*n-1) * fibonacci(2*n+1);

Formula

a(n) = A059929(n-1) * A059929(2*n-1) = A059929(n-1) * A064170(n+2).
Sum_{n>=2} (-1)^n/a(n) = (5*sqrt(5) - 11)/4 = A374149 - 11/2 = 10 * A134944 - 4 (Ohtskua, 2024).
G.f.: -x^2*(-20+65*x+195*x^2-84*x^3-13*x^4+x^5) / ( (1+x)*(x^2-3*x+1)*(x^2-18*x+1)*(x^2+7*x+1) ). - R. J. Mathar, Aug 30 2024

A384682 Decimal expansion of (5/6)*phi = 5*(1 + sqrt(5))/12, where phi is the golden ratio.

Original entry on oeis.org

1, 3, 4, 8, 3, 6, 1, 6, 5, 7, 2, 9, 1, 5, 7, 9, 0, 4, 0, 1, 7, 0, 4, 8, 9, 0, 2, 8, 6, 3, 8, 0, 3, 1, 7, 6, 4, 7, 6, 6, 9, 2, 4, 3, 1, 6, 5, 0, 4, 8, 0, 2, 3, 8, 5, 1, 1, 2, 8, 7, 3, 8, 5, 2, 2, 5, 4, 3, 8, 3, 7, 1, 9, 0, 1, 5, 7, 5, 2, 0, 4, 1, 4, 2, 2, 6, 7
Offset: 1

Views

Author

Kritsada Moomuang, Jun 06 2025

Keywords

Examples

			1.34836165729157904017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio * 5/6, 10, 100, 0][[1]]

Formula

Minimal polynomial: 36*x^2 - 30*x - 25.
Equals Integral_{x=0..1} sqrt(x + sqrt(x + sqrt(x + ...))) dx.
Equals Integral_{x=0..1} (1 + sqrt(1 + 4*x))/2 dx.
Equals 10*A134944/3 = 5*A134946. - Hugo Pfoertner, Jun 07 2025

A153506 Decimal expansion of (e+gamma+Pi+phi)/4, where gamma is the Euler-Mascheroni constant and phi is the golden ratio.

Original entry on oeis.org

2, 0, 1, 3, 7, 8, 1, 0, 3, 3, 9, 2, 5, 0, 6, 6, 5, 4, 5, 6, 5, 8, 5, 0, 7, 4, 4, 4, 7, 7, 0, 0, 5, 1, 4, 8, 2, 6, 7, 9, 2, 2, 1, 2, 5, 2, 2, 0, 5, 1, 8, 7, 9, 6, 4, 2, 2, 0, 7, 8, 2, 0, 1, 9, 4, 0, 5, 5, 0, 5, 3, 0, 6, 5, 5, 9, 0, 8, 0, 9, 2, 8, 4, 6, 0, 8, 9, 2, 8, 1, 7, 8, 3, 7, 1, 0, 5, 3, 4, 5, 6, 0, 2, 2, 5
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2008

Keywords

Examples

			2.01378103392506654565850744477005148267922125220518796422...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); phi:=(1+ Sqrt(5))/2; (Exp(1) + EulerGamma(R) + Pi(R) + phi)/4; // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[(E + EulerGamma + Pi + GoldenRatio)/4, 10, 50][[1]] (* G. C. Greubel, Aug 17 2016 *)
  • PARI
    default(realprecision, 100); phi=(1+sqrt(5))/2; (exp(1) + Euler + Pi + phi)/4 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals A003881+A019741+A134944+A001620/4. - R. J. Mathar, Jan 25 2009

Extensions

More digits from R. J. Mathar, Jan 22 2009

A290013 Length of the period of the continued fraction expansion of phi/n where phi is the golden ratio.

Original entry on oeis.org

1, 1, 2, 2, 1, 6, 2, 2, 6, 5, 4, 4, 1, 10, 8, 4, 3, 2, 8, 14, 2, 12, 10, 4, 11, 5, 14, 10, 4, 28, 8, 8, 8, 1, 20, 2, 7, 4, 8, 14, 6, 6, 18, 8, 24, 6, 2, 4, 22, 31, 12, 14, 9, 10, 2, 12, 16, 12, 20, 20, 5, 8, 8, 20, 13, 20, 22, 2, 10, 52, 28, 2, 15, 19, 36, 4
Offset: 1

Views

Author

Keywords

Comments

We calculated the continued fraction expansion of phi/n and observed that the expansion is periodic after the first nonzero term. We tracked the periodicity of the expansions and present them here. The authors acknowledge the National Science Foundation (DMS-1560019) and Muhlenberg College for supporting the REU (Research Experiences for Undergraduates) on which this sequence is based.

Crossrefs

Cf. A001622 (phi), A019863 (phi/2), A134943 (phi/3), A134944 (phi/4), A134946 (phi/6).

Programs

  • Mathematica
    a[n_] := ContinuedFraction[GoldenRatio/n] // Last // Length; Array[a, 80] (* Jean-François Alcover, Jul 28 2017 *)
Showing 1-7 of 7 results.