cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112486 Coefficient triangle for polynomials used for e.g.f.s for unsigned Stirling1 diagonals.

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 6, 26, 35, 15, 24, 154, 340, 315, 105, 120, 1044, 3304, 4900, 3465, 945, 720, 8028, 33740, 70532, 78750, 45045, 10395, 5040, 69264, 367884, 1008980, 1571570, 1406790, 675675, 135135, 40320, 663696, 4302216, 14777620, 29957620
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

The k-th diagonal of |A008275| appears as the k-th column in |A008276| with k-1 leading zeros.
The recurrence, given below, is derived from (d/dx)g1(k,x) - g1(k,x)= x*(d/dx)g1(k-1,x) + g1(k-1,x), k >= 1, with input g(-1,x):=0 and initial condition g1(k,0)=1, k >= 0. This differential recurrence for the e.g.f. g1(k,x) follows from the one for unsigned Stirling1 numbers.
The column sequences start with A000142 (factorials), A001705, A112487- A112491, for m=0,...,5.
The main diagonal gives (2*k-1)!! = A001147(k), k >= 1.
This computation was inspired by the Bender article (see links), where the Stirling polynomials are discussed.
The e.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| with k-1 leading zeros is g1(k-1,x) = exp(x)*Sum_{m=0..k-1} a(k,m)*(x^(k-1+m))/(k-1+m)!.
a(k,n) = number of lists with entries from [n] such that (i) each element of [n] occurs at least once and at most twice, (ii) for each i that occurs twice, all entries between the two occurrences of i are > i, and (iii) exactly k elements of [n] occur twice. Example: a(1,2)=5 counts 112, 121, 122, 211, 221, and a(2,2)=3 counts 1122,1221,2211. - David Callan, Nov 21 2011

Examples

			Triangle begins:
    1;
    1,    1;
    2,    5,     3;
    6,   26,    35,    15;
   24,  154,   340,   315,   105;
  120, 1044,  3304,  4900,  3465,   945;
  720, 8028, 33740, 70532, 78750, 45045, 10395;
k=3 column of |A008276| is [0,0,2,11,35,85,175,...] (see A000914), its e.g.f. exp(x)*(2*x^2/2! + 5* x^3/3! + 3*x^4/4!).
		

Crossrefs

Cf. A112007 (triangle for o.g.f.s for unsigned Stirling1 diagonals). A112487 (row sums).

Programs

  • Maple
    A112486 := proc(n,k)
        if n < 0 or k<0 or  k> n then
            0 ;
        elif n = 0 then
            1 ;
        else
            (n+k)*procname(n-1,k)+(n+k-1)*procname(n-1,k-1) ;
        end if;
    end proc: # R. J. Mathar, Dec 19 2013
  • Mathematica
    A112486 [n_, k_] := A112486[n, k] = Which[n<0 || k<0 || k>n, 0, n == 0, 1, True, (n+k)*A112486[n-1, k]+(n+k-1)*A112486[n-1, k-1]]; Table[A112486[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)

Formula

a(k, m) = (k+m)*a(k-1, m) + (k+m-1)*a(k-1, m-1) for k >= m >= 0, a(0, 0)=1, a(k, -1):=0, a(k, m)=0 if k < m.
From Tom Copeland, Oct 05 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = -(1 + t)
P(3,t) = 2 + 5 t + 3 t^2
P(4,t) = -( 6 + 26 t + 35 t^2 + 15 t^3)
P(5,t) = 24 + 154 t +340 t^2 + 315 t^3 + 105 t^4
Apparently, P(n,t) = (-1)^(n+1) PW[n,-(1+t)] where PW are the Ward polynomials A134991. If so, an e.g.f. for the polynomials is
A(x,t) = -(x+t+1)/t - LW{-((t+1)/t) exp[-(x+t+1)/t]}, where LW(x) is a suitable branch of the Lambert W Fct. (e.g., see A135338). The comp. inverse in x (about x = 0) is B(x) = x + (t+1) [exp(x) - x - 1]. See A112487 for special case t = 1. These results are a special case of A134685 with u(x) = B(x), i.e., u_1=1 and (u_n)=(1+t) for n>0.
Let h(x,t) = 1/(dB(x)/dx) = 1/[1+(1+t)*(exp(x)-1)], an e.g.f. in x for row polynomials in t of signed A028246 , then P(n,t), is given by
(h(x,t)*d/dx)^n x, evaluated at x=0, i.e., A(x,t)=exp(x*h(u,t)*d/du) u, evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t).
The e.g.f. A(x,t) = -v * Sum_{j>=1} D(j-1,u) (-z)^j / j! where u=-(x+t+1)/t, v=1+u, z=(1+t*v)/(t*v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = -1/[t*(v-A)].(End)
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=t+1, and (a_n)=t*P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 =0. - Tom Copeland, Oct 08 2011
The row polynomials R(n,x) may be calculated using R(n,x) = 1/x^(n+1)*D^n(x), where D is the operator (x^2+x^3)*d/dx. - Peter Bala, Jul 23 2012
For n>0, Sum_{k=0..n} a(n,k)*(-1/(1+W(t)))^(n+k+1) = (t d/dt)^(n+1) W(t), where W(t) is Lambert W function. For t=-x, this gives Sum_{k>=1} k^(k+n)*x^k/k! = - Sum_{k=0..n} a(n,k)*(-1/(1+W(-x)))^(n+k+1). - Max Alekseyev, Nov 21 2019
Conjecture: row polynomials are R(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling2(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(n+j+k)/((n+j-k)!*(i-j)!*k!). - Mikhail Kurkov, Apr 21 2025

A074059 Dimension of the cohomology ring of the moduli space of n-pointed curves of genus 0 satisfying the associativity equations of physics (also known as the WDVV equations).

Original entry on oeis.org

1, 1, 2, 7, 34, 213, 1630, 14747, 153946, 1821473, 24087590, 352080111, 5636451794, 98081813581, 1843315388078, 37209072076483, 802906142007946, 18443166021077145, 449326835001457846, 11572432709175470807, 314160322966817351938, 8965995574654847062469
Offset: 1

Views

Author

Margaret A. Readdy, Aug 16 2002

Keywords

Examples

			From _Paul D. Hanna_, Sep 24 2010: (Start)
E.g.f.: x + x^2/2! + 2*x^3/3! + 7*x^4/4! + 34*x^5/5! + 213*x^6/6! +...
The series reversion of the e.g.f. begins:
x - x^2/2 + x^3/6 - x^4/12 + x^5/20 - x^6/30 + x^7/42 - x^8/56 +... (End)
		

Crossrefs

Row sums of triangle A074060.

Programs

  • Maple
    series(exp(LambertW(-exp(-2)*(2+x))+2)-1,x,30): A:=simplify(%,symbolic): A074059:=n->n!*coeff(A,x,n): # Gessel
  • Mathematica
    max = 19; $Assumptions = x > 0; (Series[ Exp[2 + ProductLog[-1, -(x+2)/E^2]] - 1, {x, 0, 19}] // CoefficientList[#, x] &) * Range[0, 19]! // Rest (* Jean-François Alcover, Jun 20 2013 *)
  • PARI
    {a(n)=if(n<1,0,n!*polcoeff(serreverse(x-sum(k=2,n,(-x)^k/(k*(k-1)))+x*O(x^n)),n))} \\ Paul D. Hanna, Sep 24 2010

Formula

The exponential generating function A = A(x) = sum_{n>=1} a(n) x^n/n! satisfies the equation (1+A)log(1+A) = 2A-x. Explicitly, 1+A(x) = exp(2+W(e^(-2)(2+x))), where W is Lambert's W-function. - Ira M. Gessel, Dec 15 2005
E.g.f.: Series_Reversion[ x - Sum_{n>=2} (-x)^n/(n(n-1)) ]. - Paul D. Hanna, Sep 24 2010
Let h(x) = 1/(1-log(1+x)), then a(n) = ((h(x)*d/dx)^n)x evaluated at x=0, i.e., A(x) = exp(x*a(.)) = exp(x*h(u)*d/du) u, evaluated at u=0. Also, dA(x)/dx = h(A(x)). - Tom Copeland, Sep 06 2011
An o.g.f. is provided by the integral from w=0 to infinity of exp(-2w) * (1+z*w)^((1+z*w)/z). - Tom Copeland, Sep 09 2011
E.g.f. = -1/{1+W[-(2+x) exp(-2)]} with W(x) the Monir branch of the Lambert W fct. defined in A135338 and offset 0. - Tom Copeland, Oct 05 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)*exp(-x)*d/dx. Cf. A061356. - Peter Bala, Dec 08 2011
a(n) ~ n^(n-1) / (exp(1)*(exp(1)-2))^(n-1/2). - Vaclav Kotesovec, Oct 05 2013
a(1) = 1; a(n) = a(n-1) + Sum_{k=2..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020

Extensions

More terms from Ira M. Gessel, Dec 15 2005
a(20)-a(22) from Stefano Spezia, Feb 14 2024

A112487 a(n) = Sum_{k=0..n} E2(n, k)*2^k, where E2(n, k) are the second-order Eulerian numbers A340556.

Original entry on oeis.org

1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, 109979486890, 3764281873042, 141104799067178, 5749087305575378, 252969604725106090, 11955367835505775378, 603967991604199335722, 32479636694930586142802, 1852497140997527094395050
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Previous name: Row sums of triangle A112486.

Crossrefs

Programs

  • Maple
    A112487 := proc(n)
        add(A112486(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Dec 19 2013
    seq(op(k, convert(asympt(GAMMA(n, 2*n)*exp(2*n)/(2*n)^n, n, 20), polynom))*(-1)^(k+1)*n^k, k = 1..19); # Maple 2017, Vaclav Kotesovec, Aug 14 2017
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1));
    a := n -> add(E2(n, k)*2^k, k=0..n):
    seq(a(n), n=0..17); # Peter Luschny, Feb 13 2021
  • Mathematica
    a[n_] := (n-1)!*(Sum[ Binomial[n+k-1, n-1]* Sum[(-1)^(n+j-1)*Binomial[k, j]* Sum[(Binomial[j, l]*(j-l)!*2^(j-l)*(-1)^l*StirlingS2[n-l+j-1, j-l])/(n-l+j-1)!, {l, 0, j}], {j, 0, k}], {k, 0, n-1}]); Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; a[n_] := Sum[T[n, k] 2^k, {k, 0, n}];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Feb 13 2021 *)
  • Maxima
    a(n):=n!*(sum(binomial(n+k, n)*sum((-1)^(n+j)*binomial(k, j)*sum((binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j, j-l))/(n-l+j)!, l, 0, j), j, 0, k), k, 0, n)); /* Vladimir Kruchinin, Feb 14 2012 */
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A+A^2)+x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jun 30 2009
    

Formula

a(n) = Sum_{m=0..n} A112486(n, m), n >= 0.
a(n) = 2*A032188(n+1), n > 0. - Vladeta Jovovic, Jul 11 2007
From Paul D. Hanna, Jun 30 2009: (Start)
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^3.
E.g.f. A(x) satisfies: A(x) = exp( Integral[A(x) + A(x)^2]dx ) with A(0)=1. (End)
E.g.f. A(x) satisfies: A(x) = 2*exp(A(x)) - (2+x), where A(x) = Sum_{n>=0} a(n)*x^(n+1)/(n+1)! (the e.g.f. when offset=1). - Paul D. Hanna, Sep 23 2011
From Tom Copeland, Oct 05 2011: (Start)
With c(0)= 0 and c(n+1)= (-1)^n a(n) for n>=0, c(n)=(-1)^(n+1) PW(n,-2) with PW the Ward polynomials A134991. E.g.f. for the c(n) is A(x) = -(x+2)-LW{-2 exp[-(x+2)]}, where LW(x) is a suitable branch of the Lambert W Fct. (see A135338).
The compositional inverse is B(x) = x + 2(exp(x) - x - 1). These results are a special case of A134685 with u(x)=B(x), i.e., u_1=1 and (u_n)=2 for n>0.
Let h(x) = 1/(dB(x)/dx) = 1/[1+2(exp(x)-1)], then c(n) is given by (h(x)*d/dx)^n x, evaluated at x=0, i.e., A(x) = exp(x*h(u)*d/du) u, evaluated at u=0. Also, dA(x)/dx = h(A(x)).
The e.g.f. A(x) = -v * Sum_(j>=1) D(j-1,u) (-z)^j/ j! where u=-(x+2), v=1+u, z=(1+v)/(v^2) and D(j-1,u) are the polynomials of A042977. (End)
a(n) = n!*Sum_{k=0..n} binomial(n+k, n)*Sum_{j=0..k} (-1)^(n+j)*binomial(k, j)*Sum_{l=0..j} binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*Stirling2(n-l+j, j-l)/(n-l+j)!. - Vladimir Kruchinin, Feb 14 2012
G.f.: 1/Q(0), where Q(k)= 1 + k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ n^n / (exp(n) * (1-log(2))^(n+1/2)). - Vaclav Kotesovec, Aug 14 2017
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 02 2020

Extensions

New name from Peter Luschny, Feb 13 2021
Showing 1-3 of 3 results.