cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212656 a(n) = 5*n^2 + 1.

Original entry on oeis.org

1, 6, 21, 46, 81, 126, 181, 246, 321, 406, 501, 606, 721, 846, 981, 1126, 1281, 1446, 1621, 1806, 2001, 2206, 2421, 2646, 2881, 3126, 3381, 3646, 3921, 4206, 4501, 4806, 5121, 5446, 5781, 6126, 6481, 6846, 7221, 7606, 8001, 8406, 8821, 9246, 9681, 10126, 10581, 11046, 11521, 12006, 12501
Offset: 0

Views

Author

Alonso del Arte, May 23 2012

Keywords

Comments

Z[sqrt(-5)] is not a unique factorization domain, and some of the numbers in this sequence have two different factorizations in that domain, e.g., 21 = 3 * 7 = (1 + 2*sqrt(-5))*(1 - 2*sqrt(-5)). And of course some primes in Z are composite in Z[sqrt(-5)], like 181 = (1 + 6*sqrt(-5))*(1 - 6*sqrt(-5)).
These are pentagonal-star numbers. - Mario Cortés, Oct 26 2020

References

  • Benjamin Fine & Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Boston: Birkhäuser, 2007, page 268.

Crossrefs

Cf. A137530 (primes of the form 1+5*n^2).

Programs

Formula

a(n) = 5*n^2 + 1 = (1 + n*sqrt(-5))*(1 - n*sqrt(-5)).
G.f.: (1+3*x+6*x^2)/(1-x)^3. - Bruno Berselli, May 23 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(5))*coth(Pi/sqrt(5)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(5))*csch(Pi/sqrt(5)))/2. (End)
a(n) = A005891(n-1) + 5*A000217(n). - Mario Cortés, Oct 26 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(5))*sinh(sqrt(2/5)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(5))*csch(Pi/sqrt(5)).(End)
E.g.f.: exp(x)*(1 + 5*x + 5*x^2). - Stefano Spezia, Feb 05 2021

A138218 Numbers k such that 180k^2 + 1 is prime.

Original entry on oeis.org

1, 3, 6, 7, 14, 17, 18, 22, 24, 25, 27, 28, 29, 31, 32, 41, 46, 48, 50, 52, 55, 59, 62, 64, 66, 67, 76, 77, 83, 85, 87, 88, 92, 94, 95, 97, 102, 106, 108, 118, 123, 134, 136, 139, 140, 141, 147, 148, 154, 155, 157, 162, 165, 167, 179, 181, 192, 193, 199, 202, 203, 207
Offset: 1

Views

Author

Zak Seidov, May 05 2008

Keywords

Comments

Or, numbers j arising in A137530.

Crossrefs

Cf. A137530.

Programs

Formula

a(n) = sqrt((A137530(n) - 1)/180).

A207837 Primes of the form 5*k^4 + 1.

Original entry on oeis.org

6481, 103681, 844480081, 1036800001, 55099802881, 63727534081, 115672050001, 155584800001, 307529920081, 322620641281, 425152800001, 1019640545281, 1633266996481, 1739461754881, 2489356800001, 2634683086081, 2944329626881, 5285935072081, 6360160441681
Offset: 1

Views

Author

Bruno Berselli, Feb 21 2012

Keywords

Comments

Also primes of the form 6480*k^4+1.

Crossrefs

Cf. A207838 (values of k).
Subsequence of A137530.
Primes of the form k*n^(k-1)+1: A065091, A002648, A199307.

Programs

  • Magma
    [6480*n^4+1: n in [1..181] | IsPrime(6480*n^4+1)];
  • Mathematica
    Select[5 Range[1086]^4 + 1, PrimeQ] (* by definition *)
  • PARI
    for(n=1, 181, r=6480*n^4+1; if(isprime(r), print1(r", ")));
    

Formula

a(n) = 5*A207838(n)^4 + 1. - Paul F. Marrero Romero, Dec 07 2023

A212707 Semiprimes of the form 5*n^2 + 1.

Original entry on oeis.org

6, 21, 46, 321, 501, 721, 1126, 2206, 2881, 3646, 3921, 4501, 7606, 10581, 11521, 13521, 14581, 15681, 16246, 18001, 19846, 20481, 21781, 23806, 24501, 27381, 30421, 32001, 38721, 40501, 42321, 48021, 61606, 64981, 72001, 79381, 83206, 89781, 106581, 121681
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2012

Keywords

Comments

This is to A137530 (primes of form 1+5n^2) as semiprimes A001358 are to primes A000040. Since Z[sqrt(-5)] is not a unique factorization domain, some numbers of form 1+5n^2 are primes in Z but composite in Z[sqrt(-5)]; some values in this sequence are semiprimes in Z but have a different number than 2 of prime factors in Z[sqrt(-5)].

Examples

			a(6) = 721 = 1 + 5*(12^2) = 7 * 103.
		

Crossrefs

Cf. A001222, A001358, A137530, A212656 (5*n^2 + 1).

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..180] | IsSemiprime(s) where s is 5*n^2 + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Table[5*n^2 + 1, {n, 200}], SemiPrimeQ] (* T. D. Noe, May 24 2012 *)
    Select[Table[5*n^2 + 1, {n, 180}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Formula

A212656 INTERSECTION A001358.
{k such that 5*n^2 + 1 for a natural number n, and bigomega(k) = A001222(k) = 2}.

Extensions

Extended by T. D. Noe, May 24 2012

A247965 a(n) is the smallest number k such that m*k^2+1 is prime for all m = 1 to n.

Original entry on oeis.org

1, 1, 6, 3240, 113730, 30473520, 3776600100, 16341921960, 3332396388090
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2014

Keywords

Comments

Conjecture : the sequence is infinite.
a(10) > 15466500000000. a(11) > 107669100000000. - Hiroaki Yamanouchi, Oct 01 2014

Examples

			a(3)=6 because 6^2+1 = 37, 2*6^2+1 = 73 and 3*6^2+1 = 109 are prime numbers.
The resulting primes begin like this:
2;
2, 3;
37, 73, 109;
10497601, 20995201, 31492801, 41990401;
... - _Michel Marcus_, Sep 29 2014
		

Crossrefs

Programs

  • Maple
    for n from 1 to 6 do:
      ii:=0:
       for k from 1 to 10^10 while(ii=0) do:
         ind:=0:
           for m from 1 to n do:
             p:=m*k^2+1:
              if type(p,prime) then
               ind:=ind+1:
               fi:
            od:
           if ind=n then
            ii:=1:printf ( "%d %d \n",n,k):
           fi:
        od:
      od:
  • PARI
    a(n)=k=1;while(k,c=0;for(i=1,n,if(!ispseudoprime(i*k^2+1),c++;break));if(!c,return(k));if(c,k++))
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 28 2014

Extensions

a(7)-a(9) from Hiroaki Yamanouchi, Oct 01 2014
Showing 1-5 of 5 results.