cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A321543 a(n) = Sum_{d|n} (-1)^(d-1)*d^2.

Original entry on oeis.org

1, -3, 10, -19, 26, -30, 50, -83, 91, -78, 122, -190, 170, -150, 260, -339, 290, -273, 362, -494, 500, -366, 530, -830, 651, -510, 820, -950, 842, -780, 962, -1363, 1220, -870, 1300, -1729, 1370, -1086, 1700, -2158, 1682, -1500, 1850, -2318, 2366, -1590, 2210, -3390, 2451, -1953, 2900, -3230, 2810, -2460, 3172
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Apart from signs, same as A064027.
Cf. A321552 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Maple
    with(numtheory):
    a := n -> add( (-1)^(d-1)*d^2, d in divisors(n) ): seq(a(n), n = 1..40);
    #  Peter Bala, Jan 11 2021
  • Mathematica
    f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); f[2, e_] := 2 - (2^(2*e + 2) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 55] (* Amiram Eldar, Nov 04 2022 *)
  • PARI
    apply( a(n)=sumdiv(n, d, (-1)^(d-1)*d^2), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k-1)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 23 2018
G.f.: Sum_{n >= 1} x^n*(1 - x^n)/(1 + x^n)^3. - Peter Bala, Jan 11 2021
Multiplicative with a(2^e) = 2 - (2^(2*e + 2) - 1)/3, and a(p^e) = (p^(2*e + 2) - 1)/(p^2 - 1) for p > 2. - Amiram Eldar, Nov 04 2022

A008457 a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^3.

Original entry on oeis.org

1, 7, 28, 71, 126, 196, 344, 583, 757, 882, 1332, 1988, 2198, 2408, 3528, 4679, 4914, 5299, 6860, 8946, 9632, 9324, 12168, 16324, 15751, 15386, 20440, 24424, 24390, 24696, 29792, 37447, 37296, 34398, 43344, 53747, 50654, 48020, 61544, 73458
Offset: 1

Views

Author

Keywords

Comments

The modular form (e(1)-e(2))(e(1)-e(3)) for GAMMA_0 (2) (with constant term -1/16 omitted).
a(n) = r_8(n)/16, where r_8(n) = A000143(n) is the number of integral solutions of Sum_{j=1..8} x_j^2 = n (with the order of the summands respected). See the Grosswald reference, and the Hardy reference, pp. 146-147, eq. (9.9.3) and sect. 9.10. - Wolfdieter Lang, Jan 09 2017

Examples

			G.f. = q + 7*q^2 + 28*q^3 + 71*q^4 + 126*q^5 + 196*q^6 + 344*q^7 + 583*q^8 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.6).
  • Emil Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121, eq. (9.19).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
  • F. Hirzebruch, T. Berger and R. Jung, Manifolds and Modular Forms, Vieweg, 1994, pp. 77, 133.
  • Hans Petersson, Modulfunktionen und Quadratische Formen, Springer-Verlag, 1982; p. 179.

Crossrefs

Programs

  • Maple
    (1/16)*product((1+q^n)^8/(1-q^n)^8,n=1..60);
  • Mathematica
    nmax = 40; Rest[CoefficientList[Series[Product[((1-(-q)^k)/(1+(-q)^k))^8, {k, 1, nmax}]/16, {q, 0, nmax}], q]] (* Vaclav Kotesovec, Sep 26 2015 *)
    a[n_] := DivisorSum[n, (-1)^(n-#)*#^3&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^8 - 1) / 16, {x, 0, n}]; (* Michael Somos, Aug 10 2018 *)
    f[2, e_] := (8^(e+1)-15)/7; f[p_, e_] := (p^(3*e+3)-1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    {a(n) = if( n<1, 0, (-1)^n * sumdiv(n, d, (-1)^d * d^3))}; /* Michael Somos, Sep 25 2005 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A008457(n): return prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = (8^(e+1)-15)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2. - Vladeta Jovovic, Sep 10 2001
a(n) = (-1)^n*(sum of cubes of even divisors of n - sum of cubes of odd divisors of n), see A051000. Sum_{n>0} n^3*x^n*(15*x^n-(-1)^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
G.f.: Sum_{k>0} k^3 x^k/(1 - (-x)^k). - Michael Somos, Sep 25 2005
G.f.: (1/16)*(-1+(Product_{k>0} (1-(-q)^k)/(1+(-q)^k))^8). [corrected by Vaclav Kotesovec, Sep 26 2015]
Dirichlet g.f. zeta(s)*zeta(s-3)*(1-2^(1-s)+2^(4-2s)), Dirichlet convolution of A001158 and the quasi-finite (1,-2,0,16,0,0,...). - R. J. Mathar, Mar 04 2011
A138503(n) = -(-1)^n * a(n).
Bisection: a(2*k-1) = A001158(2*k-1), a(2*k) = 8*A001158(k) - A051000(k), k >= 1. In the Hardy reference a(n) = sigma^*3(n). - _Wolfdieter Lang, Jan 07 2017
G.f.: (theta_3(x)^8 - 1)/16, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 384. - Vaclav Kotesovec, Sep 21 2020

A363598 Expansion of Sum_{k>0} x^(2*k)/(1+x^k)^4.

Original entry on oeis.org

0, 1, -4, 11, -20, 32, -56, 95, -124, 146, -220, 328, -364, 400, -584, 775, -816, 881, -1140, 1486, -1600, 1552, -2024, 2712, -2620, 2562, -3400, 4064, -4060, 4112, -4960, 6231, -6208, 5730, -7216, 8947, -8436, 8000, -10248, 12230, -11480, 11232, -13244, 15752
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[# + 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1+x^k)^4)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d+1, 3));

Formula

G.f.: Sum_{k>0} binomial(k+1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+1,3) = (A002129(n) - A138503(n))/6.

A363616 Expansion of Sum_{k>0} x^(4*k)/(1+x^k)^4.

Original entry on oeis.org

0, 0, 0, 1, -4, 10, -20, 36, -56, 80, -120, 176, -220, 266, -368, 491, -560, 634, -816, 1050, -1160, 1210, -1540, 1982, -2028, 2080, -2656, 3192, -3276, 3380, -4060, 4986, -5080, 4896, -6008, 7345, -7140, 6954, -8656, 10224, -9880, 9796, -11480, 13552, -13668, 12650
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Magma
    A363616:= func< n | (&+[(-1)^d*Binomial(d-1,3): d in Divisors(n)]) >;
    [A363616(n): n in [1..60]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[# - 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1+x^k)^4)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d-1, 3));
    
  • SageMath
    def A363616(n): return sum(0^(n%j)*(-1)^j*binomial(j-1,3) for j in range(4, n+1))
    [A363616(n) for n in range(1,61)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: Sum_{k>0} binomial(k-1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d-1,3).
a(n) = A128315(n, 4), for n >= 4. - G. C. Greubel, Jun 22 2024
a(n) = -(A138503(n) - 6*A321543(n) + 11*A002129(n) - 6*A048272(n)) / 6. - Amiram Eldar, Jan 04 2025

A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.

Original entry on oeis.org

1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
a(n) = (A138503(n) + 3*A321543(n) + 2*A002129(n)) / 6. - Amiram Eldar, Jan 04 2025

A177155 G.f.: exp( Integral (theta_3(x)^8-1)/(16x) dx ), where theta_3(x) = 1 + Sum_{n>=1} 2*x^(n^2) is a Jacobi theta function.

Original entry on oeis.org

1, 1, 4, 13, 35, 87, 217, 539, 1291, 2999, 6880, 15595, 34738, 76202, 165282, 354655, 752546, 1580514, 3289337, 6787085, 13887937, 28195434, 56824772, 113729640, 226104615, 446665922, 877063515, 1712252521, 3324245063, 6419561961
Offset: 0

Views

Author

Paul D. Hanna, May 03 2010, May 08 2010

Keywords

Comments

Compare to g.f. of partitions in which no parts are multiples of 4:
g.f. of A001935 = exp( Integral (theta_3(x)^4-1)/(8x) dx ).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 13*x^3 + 35*x^4 + 87*x^5 +...
log(A(x)) = x + 7*x^2/2 + 28*x^3/3 + 71*x^4/4 + 126*x^5/5 +...+ A008457(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; Abs[CoefficientList[Series[Product[1/(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 10 2019 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 - x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2019 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n, sumdiv(m,d,(-1)^(m-d)*d^3)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(theta3=1+sum(m=1,sqrtint(2*n+2),2*x^(m^2)+x*O(x^n)));polcoeff(exp(intformal((theta3^8-1)/(16*x))),n)}

Formula

G.f.: exp( Sum_{n>=1} A008457(n)*x^n/n ) where A008457(n) = Sum_{d|n} (-1)^(n-d)*d^3.
a(n) ~ exp(2*Pi*n^(3/4)/3 - Zeta(3)/Pi^2) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 10 2019

A321544 a(n) = Sum_{d|n} (-1)^(d-1)*d^5.

Original entry on oeis.org

1, -31, 244, -1055, 3126, -7564, 16808, -33823, 59293, -96906, 161052, -257420, 371294, -521048, 762744, -1082399, 1419858, -1838083, 2476100, -3297930, 4101152, -4992612, 6436344, -8252812, 9768751, -11510114, 14408200, -17732440, 20511150, -23645064, 28629152, -34636831, 39296688, -44015598
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Divisor sums Sum_{d|n} (-1)^(d-1)*d^k: A048272 (k = 0), A002129 (k = 1), A321543 (k = 2), A138503 (k = 3), A279395 (k = 4, unsigned), A321545 - A321551 (k = 6 to k = 12).
Cf. A321552 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Maple
    with(numtheory):
    a := n -> add( (-1)^(d-1)*d^5, d in divisors(n) ): seq(a(n), n = 1..40);
    #  Peter Bala, Jan 11 2021
  • Mathematica
    f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := 2 - (2^(5*e + 5) - 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Nov 04 2022 *)
  • PARI
    apply( a(n)=sumdiv(n, d, (-1)^(d-1)*d^5), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k-1)*k^5*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 23 2018
G.f.: Sum_{n >= 1} x^n*(x^(4*n) - 26*x^(3*n) + 66*x^(2*n) - 26*x^n + 1)/(1 + x^n)^6 (note [1,26,66,26,1] is row 5 of A008292). - Peter Bala, Jan 11 2021
Multiplicative with a(2^e) = 2 - (2^(5*e + 5) - 1)/31, and a(p^e) = (p^(5*e + 5) - 1)/(p^5 - 1) for p > 2. - Amiram Eldar, Nov 04 2022

A338548 a(n) = n^3 * Sum_{d|n} (-1)^(n/d + 1) * mu(d) / d^3.

Original entry on oeis.org

1, -9, 26, -56, 124, -234, 342, -448, 702, -1116, 1330, -1456, 2196, -3078, 3224, -3584, 4912, -6318, 6858, -6944, 8892, -11970, 12166, -11648, 15500, -19764, 18954, -19152, 24388, -29016, 29790, -28672, 34580, -44208, 42408, -39312, 50652, -61722, 57096, -55552, 68920, -80028
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^3 Sum[(-1)^(n/d + 1) MoebiusMu[d]/d^3, {d, Divisors[n]}], {n, 1, 42}]
    nmax = 42; CoefficientList[Series[Sum[MoebiusMu[k] x^k (1 - 4 x^k + x^(2 k))/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (p^3 - 1)*p^(3*(e - 1)); f[2, 1] = -9; f[2, e_] := -7*2^(3*(e - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = n^3 * sumdiv(n, d, (-1)^(n/d+1)*moebius(d)/d^3); \\ Michel Marcus, Nov 02 2020

Formula

G.f.: Sum_{k>=1} mu(k) * x^k * (1 - 4*x^k + x^(2*k)) / (1 + x^k)^4.
G.f. A(x) satisfies: A(x) = x * (1 - 4*x + x^2) / (1 + x)^4 - Sum_{k>=2} A(x^k).
Dirichlet g.f.: (1 - 2^(4 - s)) * zeta(s - 3) / zeta(s).
a(n) = J_3(n) if n odd, J_3(n) - 16 * J_3(n/2) if n even, where J_3 = A059376 (Jordan function J_3).
Multiplicative with a(2) = -9, a(2^e) = -7*2^(3*(e-1)) for e > 1, and a(p^e) = (p^3-1)*p^(3*(e-1)) for p > 2. - Amiram Eldar, Nov 15 2022
Showing 1-8 of 8 results.