A190623 Mobius transform of A008457.
1, 6, 27, 64, 125, 162, 343, 512, 729, 750, 1331, 1728, 2197, 2058, 3375, 4096, 4913, 4374, 6859, 8000, 9261, 7986, 12167, 13824, 15625, 13182, 19683, 21952, 24389, 20250, 29791, 32768, 35937, 29478, 42875, 46656, 50653, 41154, 59319, 64000, 68921, 55566, 79507, 85184, 91125, 73002, 103823, 110592, 117649
Offset: 1
References
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 195.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A008457.
Programs
-
Mathematica
b[n_] := (-1)^n Sum[(-1)^d d^3, {d, Divisors[n]}]; a[n_] := Sum[MoebiusMu[d] b[n/d], {d, Divisors[n]}]; Array[a, 49] (* Jean-François Alcover, Sep 07 2019, from PARI *) f[p_, e_] := p^(3*e); f[2, 1] = 6; f[2, e_] := 8^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
-
PARI
\\ here b(n) is A008457. b(n)=(-1)^n*sumdiv(n, d, (-1)^d*d^3); a(n)=sumdiv(n, d, moebius(d)*b(n/d)); \\ Andrew Howroyd, Jul 23 2018
Formula
From Amiram Eldar, Dec 03 2022: (Start)
Multiplicative with a(2) = 6, a(2^e) = 8^e for e > 1, and a(p^e) = p^(3*e) for p > 2.
Dirichlet g.f.: zeta(s-3)*(1 - 2^(1-s) + 4^(2-s)).
Sum_{k=1..n} a(k) ~ (15/64) * n^4. (End)
Comments