cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010693 Periodic sequence: Repeat 2,3.

Original entry on oeis.org

2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 0

Views

Author

Keywords

Comments

a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010
Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012
p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013

Crossrefs

Cf. A139421.
Cf. A026549 (partial products).

Programs

Formula

a(n) = 5/2 - ((-1)^n)/2.
a(n) = 2 + (n mod 2) = A007395(n) + A000035(n). - Reinhard Zumkeller, Mar 23 2005
a(n) = A020639(A016767(n)) for n>0. - Reinhard Zumkeller, Jan 29 2009
From Jaume Oliver Lafont, Mar 20 2009: (Start)
G.f.: (2+3*x)/(1-x^2).
Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)
a(n) = A001615(2n)/A001615(n) for n > 0. - Enrique Pérez Herrero, Jun 06 2012
a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
E.g.f.: 2*cosh(x) + 3*sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Definition rewritten by Bruno Berselli, Sep 30 2011

A139426 Smallest number k such that M(n)^2+k*M(n)-1 is prime with M(n)= Mersenne primes =A000668(n).

Original entry on oeis.org

1, 5, 1, 5, 11, 11, 17, 19, 23, 97, 127, 145, 167, 269, 767, 479, 3307, 1453, 18007, 2357, 599, 17669, 5527, 3191, 3251, 70249, 147773, 39637
Offset: 1

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group.

Examples

			3*3+1*3-1=11 prime 3=M(1)=2^2-1 so k(1)=1;
7*7+5*7-1=83 prime 7=M(2)=2^3-1 so k(2)=5;
31*31+1*31-1=991 prime 31=M(3)=2^5-1 so k(3)=1.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;
    While[! PrimeQ[m2 + k*m - 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)

Extensions

3 more terms. - Pierre CAMI, Aug 11 2008

A139424 Smallest number k such that M(n)^2-k*M(n)-1 is prime with M(n) = Mersenne primes = A000668(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 43, 1, 41, 53, 91, 317, 317, 43, 1, 37, 3595, 563, 17239, 911, 11497, 58501, 1259, 10283, 138569, 72247, 27733, 11777, 179105
Offset: 1

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group

Examples

			3*3-1*3-1=5 prime 3=M(1)=2^2-1 so k(1)=1;
7*7-1*7-1=41 prime 7=M(2)=2^3-1 so k(2)=1;
31*31-1*31-1=929 prime 31=M(3)=2^5-1 so k(3)=1.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;
    While[! PrimeQ[m2 - k*m - 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)

Extensions

a(27)-a(28) from Robert Price, May 09 2019

A139425 Smallest number k such that M(n)^2-k*M(n)+1 is prime with M(n)= Mersenne primes =A000668(n).

Original entry on oeis.org

1, 1, 9, 3, 3, 25, 7, 21, 435, 241, 3, 153, 151, 493, 537, 2871, 1713, 4941, 4963, 307, 28413, 5035, 1615, 43525, 9973
Offset: 1

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group

Examples

			3*3-1*3+1=7 prime 3=M(1)=2^2-1 so k(1)=1;
7*7-1*7+1=43 prime 7=M(2)=2^3-1 so k(2)=1;
31*31-9*31+1=683 prime 31=M(3)=2^5-1 so k(3)=9.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;
    While[! PrimeQ[m2 - k*m + 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)

A139427 Smallest number k such that M(n)^2+k*M(n)+1 is prime with M(n)= Mersenne primes =A000668(n).

Original entry on oeis.org

1, 3, 5, 17, 17, 5, 83, 63, 71, 101, 543, 59, 569, 1029, 353, 1851, 2801, 2619, 525, 2907, 8955, 437, 30159, 5409, 8355
Offset: 1

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group

Examples

			3*3+1*3+1=13 prime 3=M(1)=2^2-1 so k(1)=1;
7*7+3*7+1=71 prime 7=M(2)=2^3-1 so k(2)=3;
31*31+5*31+1=1117 prime 31=M(3)=2^5-1 so k(3)=5.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;
    While[! PrimeQ[m2 + k*m + 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)

A139428 Smallest prime p such that M(n)^2-p*M(n)-1 is prime with M(n)= Mersenne primes =A000668(n).

Original entry on oeis.org

5, 7, 5, 17, 43, 67, 41, 53, 311, 317, 317, 43, 1427, 37, 25693, 563, 17239, 911, 11497, 112247, 1259, 190639, 138569, 296713, 27733, 11777
Offset: 2

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group

Examples

			7*7-5*7-1=13 prime 7=M(2)=2^3-1 so k(2)=5;
31*31-7*31-1=743 prime 31=M(3)=2^5-1 so k(3)=7.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; p = 1;
    While[! PrimeQ[m2 - Prime[p]*m - 1], p++];
    Prime[p], {n, 15}] (* Robert Price, Apr 17 2019 *)

A139429 Smallest prime p such that M(n)^2 - p*M(n) + 1 is prime with M(n) = A000668(n).

Original entry on oeis.org

3, 19, 3, 3, 73, 7, 271, 1021, 241, 3, 487, 151, 2971, 35839, 5737, 1723, 81943, 115741, 307, 151549, 231823, 443431, 195163, 9973, 114913, 362599
Offset: 2

Views

Author

Pierre CAMI, Apr 21 2008

Keywords

Comments

All primes certified using openpfgw_v12 from primeform group.

Examples

			7*7-3*7+1=29 prime 7=M(2)=2^3-1 so k(2)=3;
31*31-19*31+1=373 prime 31=M(3)=2^5-1 so k(3)=19.
		

Crossrefs

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
    Table[m = 2^A000043[[n]] - 1; m2 = m^2; p = 1;
    While[! PrimeQ[m2 - Prime[p]*m + 1], p++];
    Prime[p], {n, 15}] (* Robert Price, Apr 17 2019 *)
Showing 1-7 of 7 results.