cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A296920 Rational primes that decompose in the quadratic field Q(sqrt(-11)).

Original entry on oeis.org

3, 5, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599, 617, 619, 631, 641, 643, 647, 653, 661, 683, 691, 709, 719
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2017

Keywords

Comments

Primes that are 1, 3, 5, 9, or 15 mod 22. - Charles R Greathouse IV, Mar 18 2018
(Which means: union of A141849, A141850, A141852, A141856 and A141851. - R. J. Mathar, Apr 15 2024)

References

  • Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.

Crossrefs

Programs

  • Maple
    # In the quadratic field Q(sqrt(D)), for squarefree D<0, compute lists of:
    # rational primes that decompose (SD),
    # rational primes that are inert (SI),
    # primes p such that D is a square mod p (QR), and
    # primes p such that D is a nonsquare mod p (NR),
    # omitting the latter if it is the same as the inert primes.
    # Consider first M primes p.
    # Reference: Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
    with(numtheory):
    HH := proc(D,M)
        local SD,SI,QR,NR,p,q,i,t1;
        # if D >= 0 then error("D must be negative"); fi;
        if not issqrfree(D) then
            error("D must be squarefree");
        end if;
        q:=-D;
        SD:=[]; SI:=[]; QR:=[]; NR:=[];
        if (D mod 8) = 1 then
            SD:=[op(SD),2];
        end if;
        if (D mod 8) = 5 then
            SI:=[op(SI),2];
        end if;
        for i from 2 to M do
            p:=ithprime(i);
            if (D mod p) <> 0 and legendre(D,p)=1 then
                SD:=[op(SD),p];
            end if;
            if (D mod p) <> 0 and legendre(D,p)=-1 then
                SI:=[op(SI),p];
            end if;
        end do;
        for i from 1 to M do
            p:=ithprime(i);
            if legendre(D,p) >= 0 then
                QR:=[op(QR),p];
            else
            NR:=[op(NR),p];
            end if;
        end do:
        lprint("Primes that decompose:", SD);
        lprint("Inert primes:", SI);
        lprint("Primes p such that Legendre(D,p) = 0 or 1: ", QR);
        if SI <> NR then
            lprint("Note: SI <> NR here!");
            lprint("Primes p such that Legendre(D,p) = -1: ", NR);
        end if;
    end proc:
    HH(-11,200); # produces the present sequence (A296920), A191060, and A056874.
  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[KroneckerSymbol[-11, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 29 2019 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(kronecker(-11,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A141851 Primes congruent to 4 mod 11.

Original entry on oeis.org

37, 59, 103, 191, 257, 367, 389, 433, 499, 521, 587, 631, 653, 719, 829, 983, 1049, 1093, 1181, 1291, 1423, 1489, 1511, 1621, 1709, 1753, 1907, 1951, 1973, 2017, 2039, 2083, 2237, 2281, 2347, 2633, 2677, 2699, 2897, 2963, 3271, 3359, 3469, 3491, 3557, 3623
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 15 mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A306279 Numbers congruent to 3 or 18 mod 22.

Original entry on oeis.org

3, 18, 25, 40, 47, 62, 69, 84, 91, 106, 113, 128, 135, 150, 157, 172, 179, 194, 201, 216, 223, 238, 245, 260, 267, 282, 289, 304, 311, 326, 333, 348, 355, 370, 377, 392, 399, 414, 421, 436, 443, 458, 465, 480, 487, 502, 509, 524, 531, 546, 553, 568
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(seq(22*i+j, j=[3, 18]), i=0..200);
  • Mathematica
    Select[Range[200], MemberQ[{3, 18}, Mod[#, 22]] &]
    Flatten[Table[{22n + 3, 22n + 18}, {n, 0, 43}]] (* Alonso del Arte, Feb 18 2019 *)
  • PARI
    for(n=3, 678, if((n%22==3) || (n%22==18), print1(n, ", ")))
    
  • PARI
    vector(62,n,11*n-6+2*(-1)^n)
    
  • PARI
    Vec(x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 07 2019
    
  • Scala
    (3 to 949 by 22).union(18 to 942 by 22).sorted // Alonso del Arte, Feb 18 2019

Formula

a(n) = 11*n - 6 + 2*(-1)^n.
a(n) = 11*n - A105398(n + 4).
A007310(a(n) + 1) = 11*A007310(n).
From Colin Barker, Feb 07 2019: (Start)
G.f.: x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)).
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3. (End)
E.g.f.: 4 + (11*x - 6)*exp(x) + 2*exp(-x). - David Lovler, Sep 08 2022

A262608 Primes p such that floor(10*p/Pi) mod 10 = 0.

Original entry on oeis.org

19, 41, 107, 151, 173, 239, 283, 349, 421, 443, 487, 509, 619, 641, 751, 773, 839, 883, 971, 1087, 1103, 1109, 1153, 1307, 1373, 1439, 1483, 1549, 1571, 1637, 1747, 1907, 1951, 1973, 2017, 2039, 2083, 2237, 2281, 2347, 2551, 2617, 2683, 2749, 2837, 2903, 2969
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 26 2015

Keywords

Comments

a(n) = A141855(n) for 1 <= n <= 8;
a(n) = A141850(n-1) for 9 <= n <= 19;
a(n) = A141856(n-4) for 22 <= n <= 31;
a(n) = A141851(n-5) for 32 <= n <= 40;
a(n) = A141857(n-3) for 41 <= n <= 49.

Examples

			19 is a term because floor(19*10/Pi) = 60 and 60 mod 10 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 432, Mod[Floor[10 #/Pi], 10] == 0 &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    forprime(p=2, 1e4, if (10*(p\Pi) == 10*p\Pi , print1(p", "))) \\ Altug Alkan, Sep 26 2015

Extensions

More terms and better definition from Altug Alkan, Sep 26 2015
Showing 1-6 of 6 results.