cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048724 Write n and 2n in binary and add them mod 2.

Original entry on oeis.org

0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 96, 99, 102, 101, 108, 111, 106, 105, 120, 123, 126, 125, 116, 119, 114, 113, 80, 83, 86, 85, 92, 95, 90, 89, 72, 75, 78, 77, 68, 71, 66, 65, 192
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

Reversing binary representation of -n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives -n. Note that the alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A065621. - Marc LeBrun, Nov 07 2001
A permutation of the "evil" numbers A001969. - Marc LeBrun, Nov 07 2001
A048725(n) = a(a(n)). - Reinhard Zumkeller, Nov 12 2004

Examples

			12 = 1100 in binary, 24=11000 and their sum is 10100=20, so a(12)=20.
a(4) = 12 = + 8 + 4 -> - 8 + 4 = -4.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)

Crossrefs

Bisection of A003188 (even part).
See also A065620, A065621.
Cf. A242399.

Programs

Formula

a(n) = Xmult(n, 3) (or n XOR (n<<1)).
a(n) = A065621(-n).
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2(-1)^n + 1.
G.f. 1/(1-x) * sum(k>=0, 2^k*(3t-t^3)/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) = sum(k=0, n, (1-(-1)^round(+n/2^k))/2*2^k). - Benoit Cloitre, Apr 27 2005
a(n) = A001969(A003188(n)). - Philippe Deléham, Apr 29 2005
a(n) = A106409(2*n) for n>0. - Reinhard Zumkeller, May 02 2005
a(n) = A142149(2*n). - Reinhard Zumkeller, Jul 15 2008

A142150 The nonnegative integers interleaved with 0's.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Comments

Number of vertical pairs in a wheel with n equal sections. - Wesley Ivan Hurt, Jan 22 2012
Number of even terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
Also the result of writing n-1 in base 2 and multiplying the last digit with the number with its last digit removed. See A115273 and A257844-A257850 for generalization to other bases. - M. F. Hasler, May 10 2015
Also follows the rule: a(n+1) is the number of terms that are identical with a(n) for a(0..n-1). - Marc Morgenegg, Jul 08 2019

Crossrefs

Programs

Formula

a(n) = XOR{k AND (n-k): 0<=k<=n}.
a(n) = (n/2)*0^(n mod 2); a(2*n)=n and a(2*n+1)=0.
a(n) = floor(n^2/2) mod n. - Enrique Pérez Herrero, Jul 29 2009
a(n) = A027656(n-2). - Reinhard Zumkeller, Nov 05 2009
a(n) = Sum_{k=0..n} (k mod 2)*((n-k) mod 2). - Reinhard Zumkeller, Nov 05 2009
a(n+1) = A000217(n) mod A000027(n+1) = A000217(n) mod A001477(n+1). - Edgar Almeida Ribeiro (edgar.a.ribeiro(AT)gmail.com), May 19 2010
From Bruno Berselli, Oct 19 2010: (Start)
a(n) = n*(1+(-1)^n)/4.
G.f.: x^2/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) for n > 3.
Sum_{i=0..n} a(i) = (2*n*(n+1)+(2*n+1)*(-1)^n-1)/16 (see A008805). (End)
a(n) = -a(-n) = A195034(n-1)-A195034(-n-1). - Bruno Berselli, Oct 12 2011
a(n) = A000326(n) - A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..n} floor((2*i-n)/2). - Wesley Ivan Hurt, Aug 21 2014
a(n-1) = floor(n/2)*(n mod 2), where (n mod 2) is the parity of n, or remainder of division by 2. - M. F. Hasler, May 10 2015
a(n) = A158416(n) - 1. - Filip Zaludek, Oct 30 2016
E.g.f.: x*sinh(x)/2. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A000007(a(n-1)) + a(n-2) for n > 1. - Nicolas Bělohoubek, Oct 06 2024

A003817 a(0) = 0, a(n) = a(n-1) OR n.

Original entry on oeis.org

0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
Offset: 0

Views

Author

Keywords

Comments

Also, 0+1+2+...+n in lunar arithmetic in base 2 written in base 10. - N. J. A. Sloane, Oct 02 2010
For n>0: replace all 0's with 1's in binary representation of n. - Reinhard Zumkeller, Jul 14 2003

Crossrefs

This is Guy Steele's sequence GS(6, 6) (see A135416).
Cf. A167832, A167878. - Reinhard Zumkeller, Nov 14 2009
Cf. A179526; subsequence of A007448. - Reinhard Zumkeller, Jul 18 2010
Cf. A265705.

Programs

  • Haskell
    import Data.Bits ((.|.))
    a003817 n = if n == 0 then 0 else 2 * a053644 n - 1
    a003817_list = scanl (.|.) 0 [1..] :: [Integer]
    -- Reinhard Zumkeller, Dec 08 2012, Jan 15 2012
    
  • Maple
    A003817 := n -> n + Bits:-Nand(n, n):
    seq(A003817(n), n=0..61); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[0] = 0; a[n_] := a[n] = BitOr[ a[n-1], n]; Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Dec 19 2011 *)
    nxt[{n_,a_}]:={n+1,BitOr[a,n+1]}; Transpose[NestList[nxt,{0,0},70]] [[2]] (* Harvey P. Dale, May 06 2016 *)
    2^BitLength[Range[0,100]]-1 (* Paolo Xausa, Feb 08 2024 *)
  • PARI
    a(n)=1<<(log(2*n+1)\log(2))-1 \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def a(n): return 0 if n==0 else 1 + 2*a(int(n/2)) # Indranil Ghosh, Apr 28 2017
    
  • Python
    def A003817(n): return (1<Chai Wah Wu, Jul 17 2024

Formula

a(n) = a(n-1) + n*(1-floor(a(n-1)/n)). If 2^(k-1) <= n < 2^k, a(n) = 2^k - 1. - Benoit Cloitre, Aug 25 2002
a(n) = 1 + 2*a(floor(n/2)) for n > 0. - Benoit Cloitre, Apr 04 2003
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k. - Ralf Stephan, Apr 18 2003
a(n) = 2*A053644(n)-1 = A092323(n) + A053644(n). - Reinhard Zumkeller, Feb 15 2004; corrected by Anthony Browne, Jun 26 2016
a(n) = OR{k OR (n-k): 0<=k<=n}. - Reinhard Zumkeller, Jul 15 2008
For n>0: a(n+1) = A035327(n) + n = A035327(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
A092323(n+1) = floor(a(n)/2). - Reinhard Zumkeller, Jul 18 2010
a(n) = A265705(n,0) = A265705(n,n). - Reinhard Zumkeller, Dec 15 2015
a(n) = A062383(n) - 1.
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x). - Ilya Gutkovskiy, Aug 31 2019
a(n) >= A175039(n) - Austin Shapiro, Dec 29 2022

A142151 a(n) = OR{k XOR (n-k): 0<=k<=n}.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 6, 7, 14, 13, 14, 11, 14, 13, 14, 15, 30, 29, 30, 27, 30, 29, 30, 23, 30, 29, 30, 27, 30, 29, 30, 31, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 47, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 63, 126, 125, 126, 123, 126, 125
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Bits (xor, (.|.))
    a142151 :: Integer -> Integer
    a142151 = foldl (.|.) 0 . zipWith xor [0..] . reverse . enumFromTo 1
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Julia
    using IntegerSequences
    A142151List(len) = [Bits("CIMP", n, n+1) for n in 0:len]
    println(A142151List(69))  # Peter Luschny, Sep 25 2021
    
  • Maple
    A142151 := n -> n + Bits:-Nor(n, n+1):
    seq(A142151(n), n=0..69); # Peter Luschny, Sep 26 2019
  • Python
    from functools import reduce
    from operator import or_
    def A142151(n): return 0 if n == 0 else reduce(or_,(k^n-k for k in range(n+1))) if n % 2 else (1 << n.bit_length()-1)-1 <<1 # Chai Wah Wu, Jun 30 2022

Formula

a(2*n) = 2*(A062383(n)-1);
A023416(a(n)) <= 1.

A086099 a(n) = OR(k AND (n-k): 0<=k<=n), AND and OR bitwise.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 7, 6, 7, 0, 15, 14, 15, 12, 15, 14, 15, 8, 15, 14, 15, 12, 15, 14, 15, 0, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 16, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 0, 63, 62, 63, 60, 63, 62, 63, 56, 63, 62
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2003

Keywords

Comments

a(2^n - 1) = 0, a(3*2^n - 1) = 2^n;
A086100(n) = A007088(a(n)).

Examples

			a(4) = (0 AND 4) OR (1 AND 3) OR (2 AND 2) OR (3 AND 1) OR (4 AND 0) -> (000 AND 100) OR (001 AND 011) OR (010 AND 010) OR (011 AND 001) OR (111 AND 000) = 000 OR 011 OR 010 OR 011 OR 000 = 011 -> a(4)=3.
		

Crossrefs

Cf. A003817 (even bisection), A062383.
Cf. A086100 (in binary), A007088.

Programs

  • Haskell
    import Data.Bits ((.&.), (.|.))
    a086099 n = foldl1 (.|.) $ zipWith (.&.) [0..] $ reverse [0..n] :: Integer
    -- Reinhard Zumkeller, Jun 04 2012
    
  • Mathematica
    a[n_] := BitOr @@ Table[BitAnd[k, n - k], {k, 0, n}]; Table[a[n], {n, 0, 73}] (* Jean-François Alcover, Jun 19 2012 *)
  • PARI
    a(n) = n++; 1<Kevin Ryde, Apr 11 2023

Formula

a(2*n) = 2*2^floor(log_2(n)) - 1 = A003817(n).
a(2*n+1) = 2*a(n).
a(n) = A053644(n+1) - A006519(n+1). - Ridouane Oudra, Apr 09 2023
Showing 1-5 of 5 results.