A142463 a(n) = 2*n^2 + 2*n - 1.
-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Leo Tavares, Illustration: Hexagonic Diamonds.
- Leo Tavares, Illustration: Hexagonic Rectangles.
- Leo Tavares, Illustration: Hexagonic Crosses.
- Leo Tavares, Illustration: Hexagonic Columns.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[2*n^2+2*n-1: n in [0..100]];
-
Maple
A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021
-
Mathematica
Array[ -#*(2-#*2)-1&,5!,1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) Table[2n^2+2n-1,{n,0,50}] (* Harvey P. Dale, Feb 29 2024 *)
-
PARI
a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021
Formula
a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = -A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n > 0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
From Leo Tavares, Nov 22 2021: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022
Extensions
Edited by the Associate Editors of the OEIS, Sep 02 2009
Comments