cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002390 Decimal expansion of natural logarithm of golden ratio.

Original entry on oeis.org

4, 8, 1, 2, 1, 1, 8, 2, 5, 0, 5, 9, 6, 0, 3, 4, 4, 7, 4, 9, 7, 7, 5, 8, 9, 1, 3, 4, 2, 4, 3, 6, 8, 4, 2, 3, 1, 3, 5, 1, 8, 4, 3, 3, 4, 3, 8, 5, 6, 6, 0, 5, 1, 9, 6, 6, 1, 0, 1, 8, 1, 6, 8, 8, 4, 0, 1, 6, 3, 8, 6, 7, 6, 0, 8, 2, 2, 1, 7, 7, 4, 4, 1, 2, 0, 0, 9, 4, 2, 9, 1, 2, 2, 7, 2, 3, 4, 7, 4
Offset: 0

Views

Author

Keywords

Comments

The Baxa article proves that every gamma >= this constant is the Lévy constant of a transcendental number. - Michel Marcus, Apr 09 2016
The entropy of the golden mean shift. See Capobianco link. - Michel Marcus, Jan 19 2019
Also the limiting value of the area of the function y = 1/x bounded by the abscissa of consecutive F(n) points (where F(n)=A000045(n) are the Fibonacci numbers and n > 0). - Burak Muslu, May 09 2021

Examples

			0.481211825059603447497758913424368423135184334385660519661...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 31-38.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Also equals arcsinh(1/2).
Equals sqrt(5)* A086466 /2. - Seiichi Kirikami, Aug 20 2011
Equals sqrt(5)*(5* A086465 -1)/4. - Jean-François Alcover, Apr 29 2013
Also equals (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/Cat(k), where Cat(k) = (2k)!/k!/(k+1)! = A000108(k) - k-th Catalan number. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals sqrt(5)/4 * Sum_{n>=0} (-1)^n/((2n+1)*C(2*n,n)) = sqrt(5) *A344041 /4. - Alexander Adamchuk, Dec 27 2013
Equals sqrt((Pi^2/6 - W)/3), where W = Sum_{n>=0} (-1)^n/((2n+1)^2*C(2*n,n)) = A145436, attributed by Alexander Adamchuk to Ramanujan. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals lim_{j->infinity} Sum_{k=F(j)..F(j+1)-1} (1/k), where F = A000045, the Fibonacci sequence. Convergence is slow. For example: Sum_{k=21..33} (1/k) = 0.4910585.... - Richard R. Forberg, Aug 15 2014
Equals Sum_{k>=1} cos(Pi*k/5)/k. - Amiram Eldar, Aug 12 2020
Equals real solution to exp(x)+exp(2*x) = exp(3*x). - Alois P. Heinz, Jul 14 2022
Equals arccoth(sqrt(5)). - Amiram Eldar, Feb 09 2024
Sum_{n >= 1} 1/(n*P(n, sqrt(5))*P(n-1, sqrt(5))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log((1 + sqrt(5))/2) = 0.481211825059(39..), correct to 12 decimal places. - Peter Bala, Mar 16 2024
Equals Sum_{n>=0} ((-1)^(n)*binomial(2*n, n))/(2^(4*n + 1)*(2*n + 1)). - Antonio Graciá Llorente, Nov 13 2024

A294486 a(n) = binomial(2*n,n) * (2*n+1)^2.

Original entry on oeis.org

1, 18, 150, 980, 5670, 30492, 156156, 772200, 3719430, 17551820, 81477396, 373173528, 1690097500, 7582037400, 33738060600, 149067936720, 654576544710, 2858667619500, 12423860225700, 53760146239800, 231720014946420, 995238809839560, 4260800401533000
Offset: 0

Views

Author

Daniel Suteu, Oct 31 2017

Keywords

References

  • Bruce C. Berndt, Ramanujan's Notebook, Part I, Springer Verlag, 1985. See p. 289, eq. (iii).
  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987. See p. 386.

Crossrefs

Programs

  • GAP
    sequence := List([0..10], n-> Binomial(2*n, n) * (2*n + 1)^2); # Muniru A Asiru, Jan 23 2018
    
  • Magma
    [Binomial(2*n,n)*(2*n+1)^2: n in [0..30]]; // G. C. Greubel, Aug 25 2018
  • Maple
    seq(binomial(2*n, n) * (2*n + 1)^2, n=0..30); # Muniru A Asiru, Jan 23 2018
  • Mathematica
    Array[Binomial[2 #, #] (2 # + 1)^2 &, 23, 0] (* Michael De Vlieger, Nov 01 2017 *)
  • PARI
    a(n) = binomial(2*n, n) * (2*n+1)^2
    

Formula

a(n) = A000984(n) * A016754(n).
Sum_{n>=0} 1/a(n) = (8*C - Pi*log(2 + sqrt(3)))/3, where C is Catalan's constant, A006752. [Found by Ramanujan. See Berndt, 1985. - Amiram Eldar, Jan 27 2024]
G.f.: (1 + 8*x)/(1 - 4*x)^(5/2). - Ilya Gutkovskiy, Jan 23 2018
Sum_{n>=0} (-1)^n/a(n) = Pi^2/6 - 3*log(phi)^2 = A145436. - Amiram Eldar, Oct 19 2020
a(n) = Sum_{k = 0..2*n+1} (-1)^(n+k+1) * k^2 * binomial(2*n+1,k)^2. Cf. A361719. - Peter Bala, Mar 24 2023
Sum_{n>=0} A002878(n)/a(n) = (8*G - Pi*log((10+sqrt(50-22*sqrt(5)))/(10-sqrt(50-22*sqrt(5)))))/5, where G is Catalan's constant (A006752) (found by David Bradley, see Borwein and Corless, 1999). - Amiram Eldar, Jan 27 2024
D-finite with recurrence n*a(n) +2*(2*n-11)*a(n-1) +16*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
Showing 1-2 of 2 results.