cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073776 a(n) = Sum_{k=1..n} -mu(k+1) * a(n-k), with a(0)=1.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 28, 50, 83, 147, 249, 435, 742, 1288, 2207, 3819, 6561, 11333, 19497, 33640, 57915, 99874, 172020, 296550, 510886, 880580, 1517226, 2614889, 4505745, 7765094, 13380640, 23059193, 39735969, 68476885, 118001888
Offset: 0

Views

Author

Paul D. Hanna, Aug 10 2002

Keywords

Comments

Recurrence relation involves the Moebius function.
Radius of convergence of A(x) is r=0.5802946238073267...
Related limits are
lim_{n->infinity} a(n) r^n = 0.6303632342... and
lim_{n->infinity} a(n+1)/a(n) = 1.723262561763844...
From Gary W. Adamson, Aug 11 2016: (Start)
The definition in the heading follows from the INVERTi transform of (1, 2, 3, 6, 9, 17, ...) equals -mu(n) for n >= 2 (cf. A157658).
Then for example, a(6) = 17 = (1, 1, 0, 1, -1, 1) dot (9, 6, 3, 2, 1, 1) = (9 + 6 + 0 + 2 - 1 + 1); in agreement with the first example. (End)

Examples

			a(6) = -mu(2)a(5) - mu(3)a(4) - mu(4)a(3) - mu(5)a(2) - mu(6)a(1) - mu(7)a(0) = 9 + 6 + 0 + 2 - 1 + 1 = 17.
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 17*x^6 + 28*x^7 + 50*x^8 + 83*x^9 + 147*x^10 + 249*x^11 + 435*x^12 + ...
where
1/A(x) = 1 - x - x^2 - x^4 + x^5 - x^6 + x^9 - x^10 - x^12 + x^13 + x^14 - x^16 - x^18 + x^20 + x^21 - x^22 + x^25 - x^28 - x^29 - x^30 + ... + mu(n)*x^n +...
Also, g.f. A(x) satisfies:
x*A(x) = x*A(x)/A(x*A(x)) + x^2*A(x)^2/A(x^2*A(x)^2) + x^3*A(x)^3/A(x^3*A(x)^3) + x^4*A(x)^4/A(x^4*A(x)^4) + x^5*A(x)^5/A(x^5*A(x)^5) + ...
		

Crossrefs

Programs

  • Haskell
    a073776 n = a073776_list !! (n-1)
    a073776_list = 1 : f [1] where
       f xs = y : f (y : xs) where y = sum $ zipWith (*) xs ms
       ms = map negate $ tail a008683_list
    -- Reinhard Zumkeller, Nov 03 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[-MoebiusMu[k + 1]*a[n - k], {k, 1, n}]; Array[a,35,0] (* Jean-François Alcover, Apr 11 2011 *)
  • PARI
    {a(n) = my(A=[1,1],F); for(i=1,n, A=concat(A,0); F=Ser(A); A = Vec(sum(m=1,#A, subst(x/F, x, x^m*F^m))) ); A[n+1]}
    for(n=0,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 19 2016

Formula

G.f.: A(x) = x / (Sum_{n>=1} mu(n)*x^n), A(0)=1, where mu(n) = Moebius function of n.
G.f. A(x) satisfies: x*A(x) = Sum_{n>=1} x^n*A(x)^n / A( x^n*A(x)^n ). - Paul D. Hanna, Apr 19 2016

A157928 a(n) = 0 if n < 2, = 1 otherwise.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Jaroslav Krizek, Mar 09 2009

Keywords

Comments

A characteristic function which indicates whether n has a prime factorization n = product p_i^e_i where p_i are primes (A000040) and e_i nonnegative exponents, at least one e_i nonzero.
a(n), n>=1, is also generated by the following Dirichlet convolutions:
a(n) = A157658(n) * A000012(n),
a(n) = A008683(n) * A032741(n).
a(n) appears as a factor in the following Dirichlet convolutions:
a(n) * A000010(n) = A051953(n),
a(n) * A000027(n) = A001065(n),
a(n) * A000012(n) = A032741(n).
a(n) is also both the number of disconnected 0-regular graphs on n vertices and the number of disconnected 1-regular graphs on 2n vertices. - Jason Kimberley, Sep 27 2011
Partial sums of A185012. - Jason Kimberley, Oct 15 2011
Decimal expansion of 1/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

  • Mathematica
    PadRight[{0,0},120,{1}] (* Harvey P. Dale, Jun 03 2019 *)

Formula

a(n) = A057427(n-1) for n >= 2.
From Elmo R. Oliveira, Jul 20 2024: (Start)
G.f.: x^2/(1-x).
E.g.f.: exp(x) - x - 1. (End)

Extensions

Definition simplified by R. J. Mathar, May 17 2010

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A144734 Triangle read by rows, A054533 * transpose(A101688) (matrix product) provided A101688 is read as a square array by antidiagonals upwards.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 2, 0, 1, 2, 3, 4, 0, -1, 0, 2, 3, 2, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 3, 3, 3, 6, 6, 6, 0, -1, 0, -1, 0, 4, 5, 4, 5, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, -2, -2, 0, 0, 4, 4, 6, 6, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, -1, 0
Offset: 1

Views

Author

Gary W. Adamson, Sep 20 2008

Keywords

Comments

Right border = A000010, phi(n).
Row sums = A023896: (1, 1, 3, 4, 10, 6, 21, ...).

Examples

			First few rows of the triangle are as follows:
  1;
  0,  1;
  0,  1,  2;
  0,  0,  2,  2;
  0,  1,  2,  3,  4;
  0, -1,  0,  2,  3,  2;
  0,  1,  2,  3,  4,  5,  6;
  0,  0,  0,  0,  4,  4,  4,  4;
  0,  0,  0,  3,  3,  3,  6,  6,  6;
  0, -1,  0, -1,  0,  4,  5,  4,  5,  4;
  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10;
  ...
row 4 = (0, 0, 2, 2) = partial sums from the right of row 4 of triangle A054533: (0, -2, 0, 2).
		

Crossrefs

Cf. A000010, A023896, A054533, A101688, A157658 (column 2).

Formula

Triangle read by rows, A054533 * transpose(A101688) (matrix product); i.e., partial sums from of the right of triangle A054533 (because A101688 can be viewed as an upper triangular matrix of 1's).
From Petros Hadjicostas, Jul 28 2019: (Start)
T(n,k) = Sum_{m = k..n} A054533(n,m) = Sum_{d|n} d * mu(n/d) * ((n/d) - ceiling(k/d) + 1) for n >= 1 and 1 <= k <= n.
T(n,k) = phi(n) - Sum_{d|n} d * mu(n/d) * ceiling(k/d) for n >= 2 and 1 <= k <= n.
(End)

Extensions

Name edited by and more terms from Petros Hadjicostas, Jul 28 2019

A157657 a(1) = 1, a(n) = -mu(n) for n >= 2.

Original entry on oeis.org

1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, -1, 1, 0, 1, -1, 0, 0, -1, 1, 1, 0, -1, 1, 1, 0, 1, -1, 0, 0, -1, 1, 1, 0, 0, -1, 1, 0, -1, -1, -1, 0, 1, 0, -1, 0, -1, -1, -1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2009

Keywords

Comments

Apparently the Dirichlet inverse of A114006. [R. J. Mathar, Jul 15 2010]
Not multiplicative; for example a(2)*a(3) != a(6). - R. J. Mathar, Mar 31 2012

Crossrefs

Cf. A008683, A157658 (same except for a(1)).

Programs

Extensions

Added more terms, Joerg Arndt, Aug 25 2014
Showing 1-5 of 5 results.