cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108411 a(n) = 3^floor(n/2). Powers of 3 repeated.

Original entry on oeis.org

1, 1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0

Views

Author

Ralf Stephan, Jun 05 2005

Keywords

Comments

a(n) is the Parker sequence for the automorphism group of the limit of the class of oriented graphs; a(n) counts the finite circulant structures in that class. - N-E. Fahssi, Feb 18 2008
Complete sequence: every positive integer is the sum of members of this sequence. - Charles R Greathouse IV, Jul 19 2012
Conjecture: a(n+1) is the number of distinct subsets S of {0,1,2,...,n} such that the sumset S+S does not contain n. - Michael Chu, Oct 05 2021. Andrew Howroyd, Nov 20 2021: The conjecture is true: If there are m pairs of numbers that add to n then inclusion/exclusion gives sum(k=0, m, binomial(m,k)*(-1)^k*2^(2*m-2*k)) as the number of sets that don't contain any of those pairs which equals 3^m. For even n , n/2 cannot be included in any set.
Also, number of walks of length n in the graph K_{1,3} (the graph with edges {1,2}, {1,3}, {1,4}) starting at one of the degree 1 vertices. - Sean A. Irvine, May 30 2025

Examples

			a(6) = 27; 3^floor(6/2) = 3^floor(3) = 3^3 = 27.
		

Crossrefs

Essentially the same as A056449 and A162436.

Programs

Formula

O.g.f.: (1+x)/(1-3*x^2). - R. J. Mathar, Apr 01 2008
a(n) = 3^(n/2)*((1+(-1)^n)/2+(1-(-1)^n)/(2*sqrt(3))). - Paul Barry, Nov 12 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (-1)^n*sum(A158020(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Dec 01 2011
a(n) = sum(A152815(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013
a(n) = 3^A004526(n). - Michel Marcus, Aug 30 2014
E.g.f.: cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022

Extensions

Incorrect formula removed by Michel Marcus, Oct 06 2021

A094014 Expansion of (1-2*x)/(1-8*x^2).

Original entry on oeis.org

1, -2, 8, -16, 64, -128, 512, -1024, 4096, -8192, 32768, -65536, 262144, -524288, 2097152, -4194304, 16777216, -33554432, 134217728, -268435456, 1073741824, -2147483648, 8589934592, -17179869184, 68719476736, -137438953472
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Second inverse binomial transform of A094013. Third inverse binomial transform of A000129(2n-1).
The unsigned sequence has g.f. (1+2*x)/(1-8*x^2) and abs(a(n)) = 2^(3*n/2)*(1/2 + sqrt(2)/4 + (1/2 - sqrt(2)/4)*(-1)^n).

Crossrefs

Programs

  • Magma
    [n le 2 select (-2)^(n-1) else 8*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 04 2021
    
  • Mathematica
    LinearRecurrence[{0,8}, {1,-2}, 40] (* G. C. Greubel, Dec 04 2021 *)
  • Sage
    [(-2)^n*2^(n//2) for n in (0..40)] # G. C. Greubel, Dec 04 2021

Formula

a(n) = (2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (-2*sqrt(2))^n*(1/2 + sqrt(2)/4).
a(n) = (-2)^n * A016116(n). - R. J. Mathar, Apr 28 2008
Abs(a(n)) = A113836(n+1) - A113836(n) for n > 0. - Reinhard Zumkeller, Feb 22 2010
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n} A158020(n,k)*3^k. - Philippe Deléham, Dec 01 2011
E.g.f.: cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x). - G. C. Greubel, Dec 04 2021

A157785 Triangle of coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2.

Original entry on oeis.org

1, 1, -1, -2, 1, 1, -8, 6, 3, -1, 64, -40, -30, 5, 1, 1024, -704, -440, 110, 11, -1, -32768, 21504, 14784, -3080, -462, 21, 1, -2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1, 268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [1, q-1, q^2, q^3-q, q^4, q^5-q^2, q^6, q^7-q^3, q^8, ...] DELTA [-1, 0, -q, 0, -q^2, 0, -q^3, 0, -q^4, 0, ...] (for q=-2) = [1, -3, 4, -6, 16, -36, 64,...] DELTA [ -1, 0, 2, 0, -4, 0, 8, 0, -16, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 10 2009

Examples

			Triangle begins as:
          1;
          1,         -1;
         -2,          1,          1;
         -8,          6,          3,       -1;
         64,        -40,        -30,        5,       1;
       1024,       -704,       -440,      110,      11,      -1;
     -32768,      21504,      14784,    -3080,    -462,      21,     1;
   -2097152,    1409024,     924672,  -211904,  -26488,    1806,    43, -1;
  268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1;
		

Crossrefs

Cf. this sequence (q=-2), A158020 (q=-1), A007318 (q=1), A157963 (q=2).
Cf. A135950 (q=2; alternative).

Programs

  • Mathematica
    p[x_, n_, q_]:= q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
    Table[CoefficientList[Series[p[x, n, -2], {x,0,n}], x], {n,0,10}]//Flatten (* G. C. Greubel, Nov 29 2021 *)

Formula

Sum_{k=0..n} T(n, k) = 0^n.
From G. C. Greubel, Nov 29 2021: (Start)
T(n, k) = [x^k] coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2.
T(n, k) = [x^k] Product_{j=0..n-1} (q^j - x). (End)

Extensions

Edited by G. C. Greubel, Nov 29 2021
Showing 1-3 of 3 results.