cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159920 Sums of the antidiagonals of Sundaram's sieve (A159919).

Original entry on oeis.org

4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
Offset: 2

Views

Author

Russell Walsmith, Apr 26 2009

Keywords

Comments

For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019

Examples

			For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
		

Crossrefs

Programs

Formula

a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
a(n) = 2*A097900(n)/(n-2)! for n >= 2. - Cullen M. Vaney, Jul 14 2025

A336263 Numbers of the form k + s + 2*k*s where k is a positive integer and s is a Sundaram number (A159919).

Original entry on oeis.org

13, 22, 31, 37, 40, 49, 52, 58, 62, 67, 73, 76, 82, 85, 87, 94, 97, 103, 112, 115, 121, 122, 127, 130, 136, 137, 139, 142, 148, 157, 162, 166, 171, 172, 175, 178, 181, 184, 187, 192, 193, 199, 202, 211, 212, 214, 217, 220, 227, 229, 232, 237, 238, 241, 247, 253, 256
Offset: 1

Views

Author

Davide Rotondo, Jul 15 2020

Keywords

Comments

Numbers k such that bigomega(2*k + 1) >= 3. - David A. Corneth, Jul 15 2020
If a term s in A159919 is not here, 2*s+1 is a semiprime.

Examples

			4 is a Sundaram number, therefore 1+4+2*4*1=13 is a term, and (13*2)+1=27 is not a semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^8], PrimeOmega[2*# + 1] >= 3 &] (* Amiram Eldar, Jul 15 2020 *)
  • PARI
    is(n) = bigomega(2*n + 1) >= 3 \\ David A. Corneth, Jul 15 2020

Extensions

More terms from David A. Corneth, Jul 15 2020

A338373 Numbers k such that bigomega(2*k + 1) >= 4.

Original entry on oeis.org

40, 67, 94, 112, 121, 148, 157, 175, 187, 202, 220, 229, 247, 256, 262, 283, 292, 310, 312, 337, 346, 364, 367, 382, 391, 409, 412, 418, 427, 437, 445, 472, 487, 499, 514, 517, 526, 535, 544, 553, 562, 577, 580, 598, 607, 612, 634, 637, 643, 652
Offset: 1

Views

Author

Davide Rotondo, Oct 23 2020

Keywords

Comments

Numbers of the form k + A336263(m) + 2*k*A336263(m) where k and m are positive integers. If a term d in A336263 is not here, bigomega(2*d + 1) = 3.

Examples

			13 is in A336263, therefore 1 + 13 + 2*13*1 = 40 is a term, and (40*2) + 1 = 81 is not the product of 3 prime numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[650], PrimeOmega[2*# + 1] >= 4 &] (* Amiram Eldar, Oct 24 2020 *)
  • PARI
    isok(k) = bigomega(2*k+1) >= 4; \\ Michel Marcus, Oct 24 2020
Showing 1-3 of 3 results.