A052905
a(n) = (n^2 + 7*n + 2)/2.
Original entry on oeis.org
1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, 1270, 1321, 1373, 1426, 1480
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Illustration of initial terms:
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o . . . . . o
. o o o o o o o . . . . o o . . . . . o
. o o o o o . . . o o . . . . o o . . . . . o
. o o o . . o o . . . o o . . . . o o . . . . . o
. o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o o o o o o o o o o o o o o o o o o o o o o o o o o
----------------------------------------------------------------------
. 1 5 10 16 23 31 40
[_Bruno Berselli_, Feb 28 2014]
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, Involve, Vol. 10, No. 3 (2017), pp. 379-398; preprint, 2015.
- Milan Janjic, Two Enumerative Functions.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 884.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Sequence(Z),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq(binomial(n,2)-5, n=4..55); # Zerinvary Lajos, Jan 13 2007
a:=n->sum((n-4)/2, j=0..n): seq(a(n)-2, n=5..56); # Zerinvary Lajos, Apr 30 2007
with (combinat):seq((fibonacci(3, n)+n-11)/2, n=3..54); # Zerinvary Lajos, Jun 07 2008
a:=n->sum(k, k=0..n):seq(a(n)/2+sum(k, k=5..n)/2, n=3..54); # Zerinvary Lajos, Jun 10 2008
-
i=4;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
k = 3; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 03 2011 *)
Table[(n^2 + 7n + 2)/2, {n, 0, 49}] (* Alonso del Arte, Feb 03 2011 *)
LinearRecurrence[{3,-3,1},{1,5,10},60] (* Harvey P. Dale, Sep 15 2018 *)
-
a(n)=n*(n+7)/2+1 \\ Charles R Greathouse IV, Nov 20 2011
A073387
Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0
Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
1;
2, 1;
6, 4, 1;
16, 16, 6, 1;
44, 56, 30, 8, 1;
120, 188, 128, 48, 10, 1;
328, 608, 504, 240, 70, 12, 1;
896, 1920, 1872, 1080, 400, 96, 14, 1;
-
A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
[A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
-
T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
-
T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
-
def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022
A214384
T(n,k)=Number of nXnXn triangular 0..k arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors, and no element equal to its horizontal neighbors.
Original entry on oeis.org
2, 3, 4, 4, 14, 8, 5, 32, 94, 16, 6, 60, 456, 890, 32, 7, 100, 1506, 11048, 11700, 64, 8, 154, 3976, 74260, 445024, 211760, 128, 9, 224, 9044, 350232, 6981540, 29456216, 5247716, 256, 10, 312, 18480, 1305392, 65905056, 1232720402, 3183854216, 177440488, 512
Offset: 1
Some solutions for n=3 k=3
....1......1......1......3......1......3......1......1......2......1......3
...2.1....1.2....1.2....3.1....1.2....1.3....2.0....1.0....1.3....1.0....3.1
..0.2.0..1.3.1..0.2.1..2.3.0..1.2.3..2.1.3..3.0.3..1.2.0..2.1.3..0.1.0..3.0.2
A115262
Correlation triangle for n+1.
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 8, 8, 4, 5, 11, 14, 11, 5, 6, 14, 20, 20, 14, 6, 7, 17, 26, 30, 26, 17, 7, 8, 20, 32, 40, 40, 32, 20, 8, 9, 23, 38, 50, 55, 50, 38, 23, 9, 10, 26, 44, 60, 70, 70, 60, 44, 26, 10, 11, 29, 50, 70, 85, 91, 85, 70, 50, 29, 11
Offset: 0
Triangle begins
1;
2, 2;
3, 5, 3;
4, 8, 8, 4;
5, 11, 14, 11, 5;
6, 14, 20, 20, 14, 6;
...
When formatted as a square matrix:
1, 2, 3, 4, 5, ...
2, 5, 8, 11, 14, ...
3, 8, 14, 20, 26, ...
4, 11, 20, 30, 40, ...
5, 14, 26, 40, 55, ...
...
Diagonals (1,5,...):
A000330 (square pyramidal numbers),
-
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k, {k, 1, 12}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
(* Clark Kimberling, Dec 22 2011 *)
A097900
Number of runs of length 1 in all permutations of [n]. (The permutation 3574162 has two runs of length 1: 357/4/16/2.)
Original entry on oeis.org
1, 2, 7, 32, 180, 1200, 9240, 80640, 786240, 8467200, 99792000, 1277337600, 17643225600, 261534873600, 4140968832000, 69742632960000, 1244905998336000, 23475370254336000, 466306218233856000, 9731608032706560000
Offset: 1
a(3) = 7 because there are 7 runs of length 1 in the permutations 123, 13(2), (2)13, 23(1), (3)12, (3)(2)(1) (shown between parentheses).
- G. C. Greubel, Table of n, a(n) for n = 1..445
- Alice L.L. Gao, Emily X.L. Gao, Patxi Laborde-Zubieta, and Brian Y. Sun, Enumeration of Corners in Tree-like Tableaux, arXiv:1511.05456 [math.CO], 2016.
- Ira M. Gessel, Generating functions and enumeration of sequences, Ph. D. Thesis, MIT, 1977.
-
[1] cat [Factorial(n)*(n+4)/6: n in [2..25]]; // Vincenzo Librandi, Nov 18 2015
-
seq(ceil(n!*(n+4)/6),n=1..23);
-
Join[{1}, Table[n! (n + 4)/6, {n, 2, 20}]] (* Vincenzo Librandi, Nov 18 2015 *)
Rest[With[{nmax = 50}, CoefficientList[Series[x*(6 - 6*x + x^2)/(6*(1 - x)^2), {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Dec 20 2017 *)
-
my(x='x+O('x^30)); Vec(serlaplace(x*(6-6*x+x^2)/(6*(1-x)^2))) \\ G. C. Greubel, Dec 20 2017
-
a(n) = if(n==1, 1, n!*(n+4)/6); \\ Altug Alkan, Dec 21 2017
A159919
A square array of numbers, read by antidiagonals, called Sundaram's sieve.
Original entry on oeis.org
4, 7, 7, 10, 12, 10, 13, 17, 17, 13, 16, 22, 24, 22, 16, 19, 27, 31, 31, 27, 19, 22, 32, 38, 40, 38, 32, 22, 25, 37, 45, 49, 49, 45, 37, 25, 28, 42, 52, 58, 60, 58, 52, 42, 28, 31, 47, 59, 67, 71, 71, 67, 59, 47, 31, 34, 52, 66, 76, 82, 84, 82, 76, 66, 52, 34
Offset: 1
For the term in row 3 and column 3, we have T[3, 3] = 2*3*3 + 3 + 3 = 24. Thus, 2*T[3,3] + 1 = 49 is composite.
From _Petros Hadjicostas_, Jun 19 2019: (Start)
The square array begins as follows:
4, 7, 10, 13, 16, 19, ...
7, 12, 17, 22, 27, ...
10, 17, 24, 31, ...
13, 22, 31, ...
16, 27, ...
19, ...
...
(End)
- Ross Honsberger, Ingenuity in Mathematics, New Mathematical Library #23, Mathematical Association of America, 1970 (ISBN 0394709233); p. 75.
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, Inc., New York, 1966.
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)
- Andrew Baxter, Sundaram's Sieve.
- Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009.
- New Zealand Maths, Newletter 18, October 2002.
- Wikipedia, Sundaram's Sieve.
-
A159919list[dmax_]:=Table[2k(j-k+1)+j+1,{j,dmax},{k,j}];A159919list[10] (* Generates 10 antidiagonals *) (* Paolo Xausa, Jul 26 2023 *)
Showing 1-6 of 6 results.
Comments