cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A001285 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and 2's.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Or, follow a(0), ..., a(2^k-1) by its complement.
Equals limiting row of A161175. - Gary W. Adamson, Jun 05 2009
Parse A010060 into consecutive pairs: (01, 10, 10, 01, 10, 01, ...); then apply the rules: (01 -> 1; 10 ->2), obtaining (1, 2, 2, 1, 2, 1, 1, ...). - Gary W. Adamson, Oct 25 2010

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
  • A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010060 for 0, 1 version, which is really the main entry for this sequence; also A003159. A225186 (squares).
A026465 gives run lengths.
Cf. A010059 (1, 0 version).
Cf. A161175. - Gary W. Adamson, Jun 05 2009
Cf. A026430 (partial sums).
Boustrophedon transforms: A230958, A029885.

Programs

  • Haskell
    a001285 n = a001285_list !! n
    a001285_list = map (+ 1) a010060_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A001285 := proc(n) option remember; if n=0 then 1 elif n mod 2 = 0 then A001285(n/2) else 3-A001285((n-1)/2); fi; end;
    s := proc(k) local i, ans; ans := [ 1,2 ]; for i from 0 to k do ans := [ op(ans),op(map(n->if n=1 then 2 else 1 fi, ans)) ] od; RETURN(ans); end; t1 := s(6); A001285 := n->t1[n]; # s(k) gives first 2^(k+2) terms
  • Mathematica
    Nest[ Flatten@ Join[#, # /. {1 -> 2, 2 -> 1}] &, {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
    a[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Jul 02 2019 *)
    ThueMorse[Range[0,120]]+1 (* Harvey P. Dale, May 07 2021 *)
  • PARI
    a(n)=1+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)%2)%3
    
  • PARI
    a(n)=hammingweight(n)%2+1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from itertools import islice
    def A001285_gen(): # generator of terms
        yield 1
        blist = [1]
        while True:
            c = [3-d for d in blist]
            blist += c
            yield from c
    A001285_list = list(islice(A001285_gen(),30)) # Chai Wah Wu, Nov 13 2022
    
  • Python
    def A001285(n): return 2 if n.bit_count()&1 else 1 # Chai Wah Wu, Mar 01 2023

Formula

a(2n) = a(n), a(2n+1) = 3 - a(n), a(0) = 1. Also, a(k+2^m) = 3 - a(k) if 0 <= k < 2^m.
a(n) = 1 + A010060(n).
a(n) = 2 - A010059(n) = 1/2*(3 - (-1)^A000120(n)). - Ralf Stephan, Jun 20 2003
a(n) = (Sum{k=0..n} binomial(n, k) mod 2) mod 3 = A001316(n) mod 3. - Benoit Cloitre, May 09 2004
G.f.: (3/(1 - x) - Product_{k>=0} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019
Showing 1-2 of 2 results.