A165718 Integers of the form k*(k+7)/6.
3, 5, 10, 13, 20, 24, 33, 38, 49, 55, 68, 75, 90, 98, 115, 124, 143, 153, 174, 185, 208, 220, 245, 258, 285, 299, 328, 343, 374, 390, 423, 440, 475, 493, 530, 549, 588, 608, 649, 670, 713, 735, 780, 803, 850, 874, 923, 948, 999, 1025, 1078, 1105, 1160, 1188
Offset: 1
Examples
For k=1, 2, 3, ..., k*(k+7)/6 is 4/3, 3, 5, 22/3, 10, 13, 49/3, 20, 24, 85/3, 33, ..., and the integer values out of these become the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
q=3;s=0;lst={};Do[s+=((n+q)/q);If[IntegerQ[s],AppendTo[lst,s]],{n,6!}];lst
-
PARI
Vec(x*(-3-2*x+x^2+x^3) / ((1+x)^2*(x-1)^3) + O(x^60)) \\ Colin Barker, Feb 26 2017
-
PARI
a(n)=if(n%2, 3*n^2 + 16*n + 5, 3*n^2 + 14*n)/8 \\ Charles R Greathouse IV, Feb 27 2017
Formula
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(-3-2*x+x^2+x^3)/((1+x)^2 * (x-1)^3). (End)
a(n) = Sum_{i=1..n} numerator(i/2) + denominator(i/2). - Wesley Ivan Hurt, Feb 26 2017
From Colin Barker, Feb 26 2017: (Start)
a(n) = (3*n^2 + 14*n) / 8 for n even.
a(n) = (3*n^2 + 16*n + 5) / 8 for n odd. (End)
From Peter Bala, Dec 15 2020: (Start)
a(n) = A001318(n+2) - 2.
Exponents in the expansion of Sum_{n >= 0} x^n * Product_{k = 1..n+1} (1 - x^k) = 1 - x^3 - x^5 + x^10 + x^13 - x^20 - x^24 + + - - .... (End)
Sum_{n>=1} 1/a(n) = 159/98 - 2*Pi/(7*sqrt(3)). - Amiram Eldar, Jul 26 2024
E.g.f.: (x*(19 + 3*x)*cosh(x) + (5 + 17*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Dec 07 2024
Extensions
Definition simplified by R. J. Mathar, Sep 25 2009
Comments