cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A112555 Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I) and consequently the matrix logarithm satisfies log(T) = T - I, where I is the identity matrix.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -2, 0, 1, 1, 3, 4, 2, 1, 1, -1, -4, -7, -6, -3, 0, 1, 1, 5, 11, 13, 9, 3, 1, 1, -1, -6, -16, -24, -22, -12, -4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, -1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, -1, -10, -46, -128, -239, -314, -296, -200, -95, -30, -6, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2005

Keywords

Comments

Signed version of A108561. Row sums equal A084247. The n-th unsigned row sum = A001045(n) + 1 (Jacobsthal numbers). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms.
Equals row reversal of triangle A112468 up to sign, where A112468 is the Riordan array (1/(1-x),x/(1+x)). - Paul D. Hanna, Jan 20 2006
The elements here match A108561 in absolute value, but the signs are crucial to the properties that the matrix A112555 exhibits; the main property being T^m = I + m*(T - I). This property is not satisfied by A108561. - Paul D. Hanna, Nov 10 2009
Eigensequence of the triangle = A140165. - Gary W. Adamson, Jan 30 2009
Triangle T(n,k), read by rows, given by [1,-2,0,0,0,0,0,0,0,...] DELTA [1,0,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 17 2009

Examples

			Triangle T begins:
   1;
   1,   1;
  -1,   0,   1;
   1,   1,   1,   1;
  -1,  -2,  -2,   0,   1;
   1,   3,   4,   2,   1,   1;
  -1,  -4,  -7,  -6,  -3,   0,   1;
   1,   5,  11,  13,   9,   3,   1,   1;
  -1,  -6, -16, -24, -22, -12,  -4,   0,   1;
   1,   7,  22,  40,  46,  34,  16,   4,   1,   1;
  -1,  -8, -29, -62, -86, -80, -50, -20,  -5,   0,   1;
  ...
Matrix log, log(T) = T - I, begins:
   0;
   1,  0;
  -1,  0,  0;
   1,  1,  1,  0;
  -1, -2, -2,  0,  0;
   1,  3,  4,  2,  1,  0;
  -1, -4, -7, -6, -3,  0,  0;
  ...
Matrix inverse, T^-1 = 2*I - T, begins:
   1;
  -1,  1;
   1,  0,  1;
  -1, -1, -1,  1;
   1,  2,  2,  0,  1;
  -1, -3, -4, -2, -1,  1;
  ...
where adjacent sums in row n of T^-1 gives row n+1 of T.
		

Crossrefs

From Philippe Deléham, Oct 07 2009: (Start)
Sum_{k=0..n} T(n, k)*x^(n-k) = A165760(n), A165759(n), A165758(n), A165755(n), A165752(n), A165746(n), A165751(n), A165747(n), A000007(n), A000012(n), A084247(n), A165553(n), A165622(n), A165625(n), A165638(n), A165639(n), A165748(n), A165749(n), A165750(n) for x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} T(n, k)*x^k = A166157(n), A166153(n), A166152(n), A166149(n), A166036(n), A166035(n), A091004(n+1), A077925(n), A000007(n), A165326(n), A084247(n), A165405(n), A165458(n), A165470(n), A165491(n), A165505(n), A165506(n), A165510(n), A165511(n) for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. (End)

Programs

  • Mathematica
    Clear[t]; t[0, 0] = 1; t[n_, 0] = (-1)^(Mod[n, 2]+1); t[n_, n_] = 1; t[n_, k_] /; k == n-1 := t[n, k] = Mod[n, 2]; t[n_, k_] /; 0 < k < n-1 := t[n, k] = -t[n-1, k] - t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff( polcoeff( (1+2*x+x*y)/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • Sage
    def A112555_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n+1)]
    for n in (0..12): print(A112555_row(n)) # Peter Luschny, Mar 16 2016

Formula

G.f.: 1/(1-x*y) + x/((1-x*y)*(1+x+x*y)).
The m-th matrix power T^m has the g.f.: 1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)).
Recurrence: T(n, k) = [T^-1](n-1, k) + [T^-1](n-1, k-1), where T^-1 is the matrix inverse of T.
From Peter Bala, Jun 23 2025: (Start)
T^z = exp(z*log(T)) = I + z*(T - I) for arbitrary complex z, where I is the identity array.
exp(T) = e*T. More generally, exp(z * T^u) = exp(z)*T^(u*z) = exp(z)*I + u*z*exp(z)*(T - I).
sin(z * T^u) = sin(z)*I + u*z*cos(z)*(T - I).
cos(z * T^u) = cos(z)*I - u*z*sin(z)*(T - I).
tan(z * T^u) = tan(z)*I + u*z*sec(z)^2*(T - I).
Chebyshev_T(n, T^u) = I + (n^2)*u*(T - I) and
Legendre_P(n, T^u) = I + (n*(n+1)/2)*u*(T - I).
More generally, for n >= 1,
Chebyshev_T(n, z*T^u) = Chebyshev_T(n, z)*I + n*u*z*Chebyshev_U(n-1, z)*(T - I) and
Legendre_P(n, z*T^u) = Legendre_P(n, z)*I + u*Q(n, z)*(T - I), where Q(1, z) = z and Q(n, z) = n*Legendre_P(n, z) + Q(n-1, z)/z for n > 1.
All the above properties may also hold for the triangle A279006. (End)

A192011 Let P(0,x) = -1, P(1,x) = 2*x, and P(n,x) = x*P(n-1,x) - P(n-2,x) for n > 1. This sequence is the triangle of polynomial coefficients in order of decreasing exponents.

Original entry on oeis.org

-1, 2, 0, 2, 0, 1, 2, 0, -1, 0, 2, 0, -3, 0, -1, 2, 0, -5, 0, 0, 0, 2, 0, -7, 0, 3, 0, 1, 2, 0, -9, 0, 8, 0, 1, 0, 2, 0, -11, 0, 15, 0, -2, 0, -1, 2, 0, -13, 0, 24, 0, -10, 0, -2, 0, 2, 0, -15, 0, 35, 0, -25, 0, 0, 0, 1, 2, 0, -17, 0, 48, 0, -49, 0, 10, 0, 3, 0, 2, 0, -19, 0, 63, 0, -84, 0, 35, 0, 3, 0, -1
Offset: 0

Views

Author

Paul Curtz, Jun 21 2011

Keywords

Examples

			The first few rows are
  -1;
   2,   0;
   2,   0,   1;
   2,   0,  -1,   0;
   2,   0,  -3,   0,  -1;
   2,   0,  -5,   0,   0,   0;
   2,   0,  -7,   0,   3,   0,   1;
   2,   0,  -9,   0,   8,   0,   1,   0;
   2,   0, -11,   0,  15,   0,  -2,   0,  -1;
   2,   0, -13,   0,  24,   0, -10,   0,  -2,   0;
   2,   0, -15,   0,  35,   0, -25,   0,   0,   0,   1;
		

Crossrefs

Left hand diagonals are: T(n,0) = [-1,2,2,2,2,2,...], T(n,2) = A165747(n), T(n,4) = A067998(n+1), T(n,6) = -A058373(n), T(n,8) = (-1)^(n+1) * A167387(n+2) (see also A052472(n)).

Programs

  • Maple
    A192011 := proc(n,k)
            option remember;
            if k>n or k <0 or n<0 then
                    0;
            elif n= 0 then
                    -1;
            elif k=0 then
                    2;
            else
                    procname(n-1,k)-procname(n-2,k-2) ;
            end if;
    end proc: # R. J. Mathar, Nov 03 2011
  • Mathematica
    p[0, ] = -1; p[1, x] := 2x; p[n_, x_] := p[n, x] = x*p[n-1, x] - p[n-2, x]; row[n_] := CoefficientList[p[n, x], x]; Table[row[n] // Reverse, {n, 0, 9}] // Flatten (* Jean-François Alcover, Nov 26 2012 *)
    T[n_,k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, -1, If[k==0, 2, T[n-1,k] - T[n-2, k-2]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 19 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, -1, if(k==0, 2, T(n-1,k) - T(n-2,k-2)))) };
    for(n=0, 10, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 19 2019
    
  • Sage
    def T(n,k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return -1
        elif (k==0): return 2
        else: return T(n-1,k) - T(n-2, k-2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 19 2019

Formula

T(n, k) = T(n-1, k) - T(n-2, k-2), where T(0, 0) = -1, T(n, 0) = 2 and 0 <= k <= n, n >= 0. - G. C. Greubel, May 19 2019

A159964 a(n) = 2^n*(1-n).

Original entry on oeis.org

1, 0, -4, -16, -48, -128, -320, -768, -1792, -4096, -9216, -20480, -45056, -98304, -212992, -458752, -983040, -2097152, -4456448, -9437184, -19922944, -41943040, -88080384, -184549376, -385875968, -805306368, -1677721600, -3489660928
Offset: 0

Views

Author

Paul Barry, Apr 28 2009

Keywords

Comments

Hankel transform of A124791. Binomial transform of -A060747.
{1} U A159964 is a composition of generating functions of A165747 and A000012, with H=G(F(x)) with F(x) for A000012 and G(x) for A165747. - Oboifeng Dira, Aug 29 2019

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-4},{1,0},30] (* Harvey P. Dale, May 02 2016 *)

Formula

G.f.: (1-4x)/(1-2x)^2.
a(n) = -A058922(n). - Jeffrey R. Goodwin, Nov 11 2011
E.g.f.: U(0) where U(k)= 1 - 2*x/(2 - 4/(2 - (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 18 2012
a(n) = Sum_{k=0..n} (1-2k) * C(n,k). - Wesley Ivan Hurt, Sep 23 2017
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=2} 1/a(n) = -log(2)/2.
Sum_{n>=2} (-1)^n/a(n) = -log(3/2)/2. (End)

A144704 a(n) = 4^n*(1-2*n).

Original entry on oeis.org

1, -4, -48, -320, -1792, -9216, -45056, -212992, -983040, -4456448, -19922944, -88080384, -385875968, -1677721600, -7247757312, -31138512896, -133143986176, -566935683072, -2405181685760, -10170482556928
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

With the n-th term of A000984 (C(2n,n)) as numerator, |a(n)| is the denominator of the probability that a random walk with steps of +-1 will return to the starting point for the first time after 2n steps. - Shel Kaphan, Jan 12 2023

Crossrefs

Hankel transform of A100320.

Programs

  • Mathematica
    LinearRecurrence[{8,-16},{1,-4},30] (* Harvey P. Dale, Jun 12 2019 *)
  • SageMath
    [4^n*(1-2*n) for n in (0..30)] # G. C. Greubel, Jun 16 2022

Formula

G.f.: (1-12*x)/(1-4*x)^2.
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = 1 - arctanh(1/2)/2.
Sum_{n>=0} (-1)^(n+1)/a(n) = 1 + arctan(1/2)/2. (End)
E.g.f.: (1 - 8*x)*exp(4*x). - G. C. Greubel, Jun 16 2022
Sum_{n >= 1} x^(2*n-1)/a(n) = 1/4 * log((1 - x/2)/(1 + x/2)). Eldar's two summations above follow from this on setting x = 1 and x = i. - Peter Bala, Jul 08 2024

A098875 Decimal expansion of Sum_{n>0} n/exp(n).

Original entry on oeis.org

9, 2, 0, 6, 7, 3, 5, 9, 4, 2, 0, 7, 7, 9, 2, 3, 1, 8, 9, 4, 5, 4, 1, 3, 5, 2, 2, 7, 1, 6, 4, 9, 9, 6, 0, 2, 8, 8, 1, 6, 5, 5, 6, 2, 6, 6, 5, 0, 5, 5, 1, 1, 5, 2, 3, 5, 3, 9, 6, 0, 4, 0, 9, 7, 2, 2, 0, 4, 7, 1, 9, 7, 4, 6, 5, 0, 2, 4, 4, 5, 6, 8, 6, 7, 3, 6, 9, 9, 7, 3, 2, 8, 3, 4, 3, 4, 7, 9, 4, 7, 2, 5, 3, 9, 7
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004

Keywords

Comments

The expression generating this constant is a first degree Eulerian polynomial, in the "variable" e, with coefficient {1}, generated from sum_{n>=0} n^m/e^n, with m=1. See A008292. It approximates m!. - Richard R. Forberg, Feb 15 2015
See A255169 for the second degree polynomial and value.

Examples

			0.9206735942077923189454135227164996028816556266505511523539604097220...
		

Crossrefs

Programs

  • Maple
    g:=x->sum(n/exp(n),n=1..x); evalf[110](g(1500)); evalf[110](g(4000));
  • Mathematica
    RealDigits[E/(E-1)^2, 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    1+sumalt(n=1,bernreal(2*n)*(1-2*n)/(2*n)!) \\ Gleb Koloskov, Jul 12 2021

Formula

Equals exp(1)/(exp(1)-1)^2.
From Gleb Koloskov, Jul 12 2021: (Start)
Equals (1/2)/(cosh(1)-1).
Equals 1+Sum_{n>0} B(2*n)*(1-2*n)/(2*n)! = 1+Sum_{n>0} (A027641(2*n)/A027642(2*n))*A165747(n)/A010050(n).
Equals LambertW(x)*LambertW(-1,x), where x = (1/(1-e))*exp(1/(1-e)) = -A073333*exp(-A073333). (End)

A330885 Square array T(n,k) read by antidiagonals upwards: T(n,0)=1; T(n,1) = n+1; T(n,2) = 2n+1, T(n,k>2) = T(n,k-1) - T(n,k-2) - T(n,k-3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, -1, 1, 4, 5, 0, -3, 1, 5, 7, 1, -5, -3, 1, 6, 9, 2, -7, -8, 1, 1, 7, 11, 3, -9, -13, -3, 7, 1, 8, 13, 4, -11, -18, -7, 10, 9, 1, 9, 15, 5, -13, -23, -11, 13, 21, 1, 1, 10, 17, 6, -15, -28, -15, 16, 33, 14, -15
Offset: 0

Views

Author

Bob Selcoe, May 05 2020

Keywords

Examples

			Array starts:
1  1   1  -1   -3   -3    1   7   9   1  -15   -25
1  2   3   0   -5   -8   -3  10  21  14  -17   -52
1  3   5   1   -7  -13   -7  13  33  27  -19   -79
1  4   7   2   -9  -18  -11  16  45  40  -21  -106
1  5   9   3  -11  -23  -15  19  57  53  -23  -133
1  6  11   4  -13  -28  -19  22  69  66  -25  -160
1  7  13   5  -15  -33  -23  25  81  79  -27  -187
		

Crossrefs

Columns k: A000012 (k=0), A000027 (k=1), A005408 (k=2), A023443 (k=3), A165747 (k=4), -A016885 (k=5), -A004767 (k=6), A016777 (k=7), A017629 (k=8), A190991 (k=9).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3, k*n+1, T[n, k-1] - T[n, k-2] - T[n, k-3]];
    Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2020 *)

Formula

T(0,k) = A180735(k-1).
T(n,k) - T(n-1,k) = -A078016(k+1).
Showing 1-6 of 6 results.