cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A041041 Denominators of continued fraction convergents to sqrt(26).

Original entry on oeis.org

1, 10, 101, 1020, 10301, 104030, 1050601, 10610040, 107151001, 1082120050, 10928351501, 110365635060, 1114584702101, 11256212656070, 113676711262801, 1148023325284080, 11593909964103601, 117087122966320090, 1182465139627304501, 11941738519239365100
Offset: 0

Views

Author

Keywords

Comments

Generalized Fibonacci sequence.
Sqrt(26) = 10/2 + 10/101 + 10/(101*10301) + 10/(10301*1050601) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 10's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0, 1, ..., 10} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Bruno Berselli, May 03 2018: (Start)
Numbers k for which m*k^2 + (-1)^k is a perfect square:
m = 2: 0, 1, 2, 5, 12, 29, 70, 169, ... (A000129);
m = 3: 0, 4, 56, 780, 10864, 151316, ... (4*A007655);
m = 5: 0, 1, 4, 17, 72, 305, 1292, ... (A001076);
m = 6: 0, 2, 20, 198, 1960, 19402, ... (A001078);
m = 7: 0, 48, 12192, 3096720, ... (2*A175672);
m = 8: 0, 6, 204, 6930, 235416, ... (A082405);
m = 10: 0, 1, 6, 37, 228, 1405, 8658, ... (A005668);
m = 11: 0, 60, 23880, 9504180, ... [°];
m = 12: 0, 2, 28, 390, 5432, 75658, ... (A011944);
m = 13: 0, 5, 180, 6485, 233640, ... (5*A041613);
m = 14: 0, 4, 120, 3596, 107760, ... (A068204);
m = 15: 0, 8, 496, 30744, 1905632, ... [°];
m = 17: 0, 1, 8, 65, 528, 4289, 34840, ... (A041025);
m = 18: 0, 4, 136, 4620, 156944, ... (A202299);
m = 19: 0, 13260, 1532829480, ... [°];
m = 20: 0, 2, 36, 646, 11592, 208010, ... (A207832);
m = 21: 0, 12, 1320, 145188, ... (A174745);
m = 22: 0, 42, 16548, 6519870, ... (A174766);
m = 23: 0, 240, 552480, 1271808720, ... [°];
m = 24: 0, 10, 980, 96030, 9409960, ... (A168520);
m = 26: 0, 1, 10, 101, 1020, 10301, ... (this sequence);
m = 27: 0, 260, 702520, 1898208780, ... [°];
m = 28: 0, 24, 6096, 1548360, ... (A175672);
m = 29: 0, 13, 1820, 254813, 35675640, ... [°];
m = 30: 0, 2, 44, 966, 21208, 465610, ... (2*A077421), etc.
[°] apparently without related sequences in the OEIS.
(End)
From Michael A. Allen, Mar 12 2023: (Start)
Also called the 10-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 10 kinds of squares available. (End)

Crossrefs

Programs

  • Magma
    I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
  • Maple
    seq(combinat:-fibonacci(n+1, 10), n=0..19); # Peter Luschny, May 04 2018
  • Mathematica
    Denominator[Convergents[Sqrt[26], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{10,1}, {1,10}, 30] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-10*x-x^2)) \\ G. C. Greubel, Jan 24 2018
    
  • Sage
    [lucas_number1(n,10,-1) for n in range(1, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: 1/(1 - 10*x - x^2).
a(n) = 10*a(n-1) + a(n-2), n>=1; a(-1):=0, a(0)=1.
a(n) = S(n, 10*i)*(-i)^n where i^2:=-1 and S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = 5+sqrt(26), am = -1/ap = 5-sqrt(26).
a(n) = F(n+1, 10), the (n+1)-th Fibonacci polynomial evaluated at x=10. - T. D. Noe, Jan 19 2006
a(n) = Sum_{i=0..floor(n/2)} binomial(n-i,i)*10^(n-2*i). - Sergio Falcon, Sep 24 2007

Extensions

Extended by T. D. Noe, May 23 2011

A168522 a(n) = 98*a(n-1) - 2*a(n-2); a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 1, 98, 9602, 940800, 92179196, 9031679608, 884920243192, 86704120473600, 8495233965926416, 832359520419841568, 81554242533212620832, 7990651049213997158400, 782920694337905296281536, 76710246743016291041273728, 7516038339426920711452262272
Offset: 1

Views

Author

Mark Dols, Nov 28 2009

Keywords

Comments

a(n)/a(n+1) converges to 49 - sqrt(2399). - corrected by Mark Dols, Jun 20 2010

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 98*Self(n-1)-2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jul 25 2016
  • Mathematica
    LinearRecurrence[{98,-2},{0,1}, 25] (* G. C. Greubel, Jul 25 2016 *)

Formula

G.f.: x^2/(1 - 98x + 2x^2). - Philippe Deléham, Nov 29 2009
E.g.f.: (1/(2*b))*exp(49*x)*( 49*sinh(b*x) - b*cosh(b*x) ) - (1/2), where b = sqrt(2399). - G. C. Greubel, Jul 25 2016

Extensions

Definition adapted to offset by Georg Fischer, Jun 19 2021

A278438 Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
Offset: 1

Views

Author

Bruno Berselli, Nov 23 2016

Keywords

Comments

It is well known that T(m) + k*T(m+1) is always a square for k=1. For k=3, the nonnegative values of m are the terms of A278310.
Square roots of T(m) + 2*T(m+1) are listed by A168520 (after 0).
Negative values of m for which T(m) + 2*T(m+1) is a square: -1, -2, -82, -7922, -776162, ...

Crossrefs

Subsequence of A056220.
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.

Programs

  • Magma
    Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
    
  • Maple
    P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2),integer) then print(n); fi; od; end: P(10^9); #  Paolo P. Lava, Nov 25 2016
  • Mathematica
    Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
    RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
    LinearRecurrence[{99,-99,1},{7,799,78407},20] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
  • Sage
    def A278438():
        a, b = 7, 799
        yield a
        while True:
            yield b
            a, b = b, 98*b - a + 112
    a = A278438(); print([next(a) for  in range(15)]) # _Peter Luschny, Nov 24 2016
    

Formula

O.g.f.: x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: (exp((5-2*sqrt(6))^2*x) + exp((5+2*sqrt(6))^2*x) - 14*exp(x))/12 + 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>3.
a(n) = 98*a(n-1) - a(n-2) + 112 for n>2.
a(n) = a(-n) = ((5 + 2*sqrt(6))^(2*n) + (5 - 2*sqrt(6))^(2*n))/12 - 7/6.
a(n) = A001079(2*n)/6 - 7/6.
a(n) = 2*A001078(n)^2 - 1 = A122652(n)^2/2 - 1.
a(n) = -A278620(n+1) + 106*A278620(n) + 7*A278620(n-1).
Lim_{n -> infinity} a(n)/a(n-1) = (5 + 2*sqrt(6))^2.

A171415 a(n) = 99*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 99, 9800, 970101, 96030199, 9506019600, 940999910201, 93149485090299, 9220858024029400, 912771794893820301, 90355186836464180399, 8944250725015060039200, 885390466589654479700401, 87644711941650778430300499, 8675941091756837410120049000, 858830523371985252823454550501
Offset: 0

Views

Author

Mark Dols, Dec 08 2009

Keywords

Comments

Related to Motzkin numbers.

Crossrefs

Programs

  • Maple
    a(0):=0: a(1):=1: for n from 0 to 50 do a(n+2):=99*a(n+1)-a(n): od: seq(a(n),n=0..30);
    taylor((z/(1-99*z+z^2)),z=0,30); # Richard Choulet, Dec 10 2009
  • Mathematica
    LinearRecurrence[{99,-1},{0,1},30] (* Harvey P. Dale, Dec 18 2015 *)

Formula

a(n+1)^2 - a(n)^2 = a(2*n+1). - Richard Choulet, Dec 10 2009
G.f.: x/(1-99*x+x^2). - Philippe Deléham, Dec 09 2009
E.g.f.: 2*exp(99*x/2)*sinh(sqrt(9797)*x/2)/sqrt(9797). - Stefano Spezia, Aug 05 2024

Extensions

Offset adapted to definition by Georg Fischer, Jun 18 2021
a(14)-a(16) from Stefano Spezia, Aug 05 2024
Showing 1-4 of 4 results.