cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A167923 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183255
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) )); // G. C. Greubel, Sep 10 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-14*t+104*t^16-91*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
    coxG[{16,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 22 2020 *)
  • SageMath
    def A167955_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) ).list()
    A167955_list(40) # G. C. Greubel, Sep 10 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 91*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 14*t + 104*t^16 - 91*t^17).
a(n) = 13*Sum_{j=1..15} a(n-j) - 91*a(n-16). (End)

A162785 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 15, 210, 2835, 38220, 514605, 6928740, 93285465, 1255955610, 16909618635, 227663487870, 3065158424055, 41267909559240, 555612506386665, 7480515990707760, 100714290692336685, 1355971748798391270
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[15, 210, 2835];; for n in [4..20] do a[n]:=13*a[n-1]+13*a[n-2] -91*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4), {x, 0, 20}], x] (* or *) coxG[{3, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(91*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 14*x + 104*x^3 - 91*x^4). - G. C. Greubel, Apr 26 2019

A163962 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067255, 112940100, 1581140925, 22135686300, 309895595100, 4338482148000, 60737963515320, 850320477564285, 11904332524792890, 166658497119549435, 2333188744879254990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7), {x, 0, 20}], x] (* G. C. Greubel, Aug 13 2017, modified Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7)) \\ G. C. Greubel, Aug 13 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -14*x +104*x^6 -91*x^7). - G. C. Greubel, Apr 25 2019

A163440 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576135, 8064420, 112881405, 1580053020, 22116729180, 309578036040, 4333306233165, 60655281460410, 849019887139515, 11884122064943310, 166347525415813560, 2328442863574420320
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, 13, 13, 13, -91}, {15, 210, 2940, 41160, 576135}, 30] (* G. C. Greubel, Dec 23 2016 *)
    coxG[{5, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)) \\ G. C. Greubel, Dec 23 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-14*x+104*x^5-91*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
a(n) = 13*a(n-1)+13*a(n-2)+13*a(n-3)+13*a(n-4)-91*a(n-5). - Wesley Ivan Hurt, May 10 2021

A165875 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701655, 4338819821700, 60743477483325, 850408684479900, 11905721578705500, 166680102045693600, 2333521427853142800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701655];; for n in [11..20] do a[n]:=13*Sum([1..9], j-> a[n-j]) -19*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-14*t+104*t^10-91*t^11) )); // G. C. Greubel, Sep 23 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-14*t+104*t^10-91*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 23 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-14*t+104*t^10-91*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 17 2016 *)
    coxG[{10, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 23 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-14*t+104*t^10-91*t^11)) \\ G. C. Greubel, Sep 23 2019
    
  • Sage
    def A165875_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-14*t+104*t^10-91*t^11)).list()
    A165875_list(30) # G. C. Greubel, Sep 23 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).

A166382 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824535, 60743477542020, 850408685567805, 11905721597662620, 166680102363263580, 2333521433029506720
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+x)*(1-x^11)/(1-14*x+104*x^11-91*x^12) )); // G. C. Greubel, Jul 23 2024
    
  • Mathematica
    With[{a=91, b=13}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(b+1)*t +(a+b)*t^11-a*t^12), {t,0,40}], t]] (* G. C. Greubel, May 10 2016; Jul 23 2024 *)
    coxG[{11,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 25 2019 *)
  • SageMath
    def A166382_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^11)/(1-14*x+104*x^11-91*x^12) ).list()
    A166382_list(30) # G. C. Greubel, Jul 23 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 13*Sum_{j=1..10} a(n-j) - 91*a(n-11).
G.f.: (1+x)*(1 - x^11)/(1 - 14*x + 104*x^11 - 91*x^12). (End)

A166583 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544855, 850408685626500, 11905721598750525, 166680102382220700, 2333521433347076700
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) )); // G. C. Greubel, Dec 03 2024
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016; Dec 03 2024 *)
    coxG[{12,91,-13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
  • SageMath
    def A166583_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) ).list()
    A166583_list(40) # G. C. Greubel, Dec 03 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t +1).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 13*Sum_{j=1..11} a(n-j) - 91*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13). (End)

A166971 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629335, 11905721598809220, 166680102383308605, 2333521433366033820
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 29 2016 *)
    coxG[{13,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 07 2022 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).

A167116 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812055, 166680102383367300, 2333521433367121725
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (91*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
Showing 1-10 of 49 results. Next