cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A172129 Number of ways to place 5 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 112, 3368, 39680, 282248, 1444928, 5865552, 20014112, 59673360, 159698416, 391202680, 890095584, 1902427800, 3853570560, 7450556064, 13829016768, 24759442464, 42930138864, 72328779720, 118747638592
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

For any fixed value of k>1, a(n) = n^(2k) /k! - 2n^(2k - 1) /3/(k - 2)! + ...

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[8*x^4*(14 +337*x +2574*x^2 +9871*x^3 +22040*x^4 +31334*x^5 +28808*x^6 +17522*x^7 +6666*x^8 +1593*x^9 +186*x^10 +15*x^11)/((1-x)^11*(1+x)^5), {x, 0, 50}], x]] (* Vincenzo Librandi, May 02 2013 *)
  • SageMath
    [(1/360)*(n-2)*( n*(1344 -2844*n +3326*n^2 -2592*n^3 +1435*n^4 -590*n^5 +177*n^6 -34*n^7 +3*n^8) -15*(54 -58*n +22*n^2 -3*n^3)*(n%2) ) for n in (1..50)] # G. C. Greubel, Apr 17 2022

Formula

a(n) = n*(n-2)*(3*n^8 - 34*n^7 + 177*n^6 - 590*n^5 + 1435*n^4 - 2592*n^3 + 3326*n^2 - 2844*n + 1344)/360 if n is even.
a(n) = (n-1)*(n-2)*(n-3)*(3*n^7 - 22*n^6 + 80*n^5 - 204*n^4 + 379*n^3 - 464*n^2 + 378*n - 270)/360 if n is odd.
G.f.: 8*x^4*(14 + 337*x + 2574*x^2 + 9871*x^3 + 22040*x^4 + 31334*x^5 + 28808*x^6 + 17522*x^7 + 6666*x^8 + 1593*x^9 + 186*x^10 + 15*x^11) / ((1-x)^11*(1+x)^5). - Vaclav Kotesovec, Mar 25 2010
a(n) = (1/360)*(n-2)*( n*(1344 -2844*n +3326*n^2 -2592*n^3 +1435*n^4 -590*n^5 +177*n^6 -34*n^7 +3*n^8) -15*(54 -58*n +22*n^2 -3*n^3)*(1-(-1)^n)/2 ). - G. C. Greubel, Apr 17 2022

A172135 Number of ways to place 4 nonattacking knights on an n X n board.

Original entry on oeis.org

0, 1, 18, 412, 4436, 26133, 111066, 376560, 1080942, 2732909, 6253408, 13204356, 26100160, 48819677, 87137934, 149398608, 247349946, 397168485, 620696612, 946921684, 1413726108, 2069939461, 2977725410, 4215337872
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

References

  • E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63

Crossrefs

Column k=4 of A244081.

Programs

  • Magma
    [0,1,18,412,4436] cat [(n^8 -54*n^6 +144*n^5 +1019*n^4 -5232*n^3 -2022*n^2 +51120*n -77184)/24: n in [6..50]]; // G. C. Greubel, Apr 19 2022
    
  • Mathematica
    CoefficientList[Series[x*(1 +9*x +286*x^2 +1292*x^3 -345*x^4 +3099*x^5 -5142*x^6 +3606*x^7 -1162*x^8 -390*x^9 +690*x^10 -312*x^11 +48*x^12)/(1-x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, May 26 2013 *)
  • SageMath
    [0,1,18,412,4436] + [(n^8 -54*n^6 +144*n^5 +1019*n^4 -5232*n^3 -2022*n^2 +51120*n -77184)/24 for n in (6..50)] # G. C. Greubel, Apr 19 2022

Formula

a(n) = (n^8 - 54*n^6 + 144*n^5 + 1019*n^4 - 5232*n^3 - 2022*n^2 + 51120*n - 77184)/24, n >= 6. (Karl Fabel, 1966)
G.f.: x^2 * ( 1 + 9*x + 286*x^2 + 1292*x^3 - 345*x^4 +3099*x^5 - 5142*x^6 + 3606*x^7 - 1162*x^8 - 390*x^9 + 690*x^10 - 312*x^11 + 48*x^12) / (1-x)^9. - Vaclav Kotesovec, Mar 25 2010
E.g.f.: x^2/2! + 18*x^3/3! + 412*x^4/4! + 4436*x^5/5! + (1/120)*(385920 + 161040*x + 17940*x^2 - 1200*x^3 - 2660*x^4 - 4484*x^5 + (-385920 + 224880*x - 49860*x^2 + 2940*x^3 + 3250*x^4 + 1920*x^5 + 1060*x^6 + 140*x^7 + 5*x^8)*exp(x)). - G. C. Greubel, Apr 19 2022

A172227 Number of ways to place 4 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^8-30n^6+24n^5+323n^4-504n^3-1110n^2+2760n-1224)/24, n>=3.
G.f.: -x^3*(4*x^8-26*x^7+3*x^6+303*x^5-736*x^4+180*x^3+1595*x^2+351*x+6)/(x-1)^9. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,4). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(3) and g.f., Vaclav Kotesovec, Apr 29 2011

A176886 Number of ways to place 6 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 16, 1960, 53744, 692320, 5599888, 33001664, 154215760, 603563504, 2052729728, 6229649352, 17202203680, 43870041520, 104531112928, 234870173248, 501360888160
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 28 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 8 x^3 (90 x^15 + 1332 x^14 + 15417 x^13 + 93042 x^12 + 372376 x^11 + 983864 x^10 + 1834807 x^9 + 2423054 x^8 + 2310242 x^7 + 1568260 x^6 + 748519 x^5 + 239742 x^4 + 48236 x^3 + 5264 x^2 + 233 x + 2) / ((x - 1)^13 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

From Vaclav Kotesovec, Apr 27 2010: (Start)
Explicit formula: a(n) = n*(n-2)*(126*n^10 -2268*n^9 +18774*n^8 -97216*n^7 +361165*n^6 -1029454*n^5 +2283178*n^4 -3841960*n^3 +4676932*n^2 -3808152*n +1640160)/90720 if n is even and a(n) = (n-1)*(n-3)*(126*n^10 -2016*n^9 +14868*n^8 -69244*n^7 +234017*n^6 -607984*n^5 +1211879*n^4 -1797328*n^3 +1953593*n^2 -1550820*n +722925)/90720 if n is odd.
G.f.: -8x^4*(90x^15 +1332x^14 +15417x^13 +93042x^12 +372376x^11 +983864x^10 +1834807x^9 +2423054x^8 +2310242x^7 +1568260x^6 +748519x^5 +239742x^4 +48236x^3 +5264x^2 +233x +2)/((x-1)^13*(x+1)^7). (End)

A201862 Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.

Original entry on oeis.org

1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2011

Keywords

Comments

Also the number of vertex covers and independent vertex sets of the n X n bishop graph.

Crossrefs

Programs

  • Mathematica
    knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
    *Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
    *Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
    Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]

Formula

a(n) = A216078(n+1) * A216332(n+1). - Andrew Howroyd, May 08 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 01 2024

A187239 Number of ways to place 7 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 440, 38368, 1022320, 14082528, 126490352, 837543200, 4412818240, 19447224864, 74255991784, 251997948736, 774861621936, 2191005028672, 5764306674400, 14243327787456, 33309659739904, 74194554880960, 158241369977880, 324605935279648, 642894402918768
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 8 x^4 (630 x^18 + 10620 x^17 + 153525 x^16 + 1211058 x^15 + 6621390 x^14 + 24647178 x^13 + 66958554 x^12 + 133891418 x^11 + 202680754 x^10 + 232634698 x^9 + 204008900 x^8 + 135332502 x^7 + 67245306 x^6 + 24326718 x^5 + 6174582 x^4 + 1024222 x^3 + 99344 x^2 + 4466 x + 55) / ((x - 1)^15 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^14/5040 - n^13/180 + 313n^12/4320 - 383n^11/648 + 14797n^10/4320 - 38233n^9/2520 + 3217n^8/60 - 145469n^7/945 + 1546679n^6/4320 - 4297801n^5/6480 + 257903n^4/270 - 3915679n^3/3780 + 1787007n^2/2240 - 318023n/840 + 9503/128 + (-n^8/192 + n^7/8 - 389n^6/288 + 689n^5/80 - 319n^4/9 + 1153n^3/12 - 95965n^2/576 + 20129n/120 - 9503/128)*(-1)^n.
G.f.: -8x^5*(630x^18 + 10620x^17 + 153525x^16 + 1211058x^15 + 6621390x^14 + 24647178x^13 + 66958554x^12 + 133891418x^11 + 202680754x^10 + 232634698x^9 + 204008900x^8 + 135332502x^7 + 67245306x^6 + 24326718x^5 + 6174582x^4 + 1024222x^3 + 99344x^2 + 4466x + 55)/((x-1)^15*(x+1)^9).
a(7) = A002465(7).

A201245 Number of ways to place 4 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 29, 661, 6285, 35378, 143787, 468529, 1301351, 3202970, 7170593, 14872997, 28969129, 53527866, 94568255, 160741233, 264175507, 421511954, 655152581, 994751765, 1478979173, 2157585442, 3093803379, 4367119121, 6076449375, 8343762538, 11318183177
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (2 x^8 - 55 x^7 + 230 x^6 - 254 x^5 - 225 x^4 + 173 x^3 + 1380 x^2 + 400 x + 29)/(x-1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)

Formula

a(n) = (n^8 - 30n^6 + 48n^5 + 299n^4 - 912n^3 - 462n^2 + 4368n - 4200)/24, n>=3.
G.f.: -x^3*(2*x^8 - 55*x^7 + 230*x^6 - 254*x^5 - 225*x^4 + 173*x^3 + 1380*x^2 + 400*x + 29)/(x-1)^9.

A172139 Number of ways to place 4 nonattacking zebras on an n X n board.

Original entry on oeis.org

0, 1, 126, 1168, 7334, 35749, 137970, 438984, 1208246, 2969389, 6662480, 13873100, 27144408, 50389581, 89424014, 152638280, 251834530, 403250693, 628798516, 957543164, 1427453780, 2087456085, 2999819778, 4242915176
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(1+117*x+70*x^2+1274*x^3+1333*x^4-2109*x^5-462*x^6 +8858*x^7-17006*x^8+15166*x^9-6838*x^10+1478*x^11-650*x^12+760*x^13-376*x^14 +64*x^15)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [0,1,126,1168,7334,35749,137970,438984] + [(n^8 -54*n^6 +240*n^5 +827*n^4 -8592*n^3 +10362*n^2 +75600*n -204864)/24 for n in (9..50)] # G. C. Greubel, Apr 19 2022

Formula

a(n) = (n^8 - 54*n^6 + 240*n^5 + 827*n^4 - 8592*n^3 + 10362*n^2 + 75600*n - 204864)/24, n >= 9.
G.f.: x^2*(1 + 117*x + 70*x^2 + 1274*x^3 + 1333*x^4 - 2109*x^5 - 462*x^6 + 8858*x^7 - 17006*x^8 + 15166*x^9 - 6838*x^10 + 1478*x^11 - 650*x^12 + 760*x^13 - 376*x^14 + 64*x^15)/(1-x)^9. - Vaclav Kotesovec, Mar 25 2010

A177757 Number of ways to place 4 nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 64, 600, 6912, 29400, 132864, 381024, 1139200, 2613600, 6177600, 12269400, 24912384, 44717400, 81636352, 135945600, 229423104, 360561024, 572788800, 859685400, 1301766400, 1881864600, 2740725504, 3840540000
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 8 x^3 (3 x^11 + 122 x^10 + 401 x^9 + 2508 x^8 + 3316 x^7 + 7780 x^6 + 5172 x^5 + 5236 x^4 + 1609 x^3 + 666 x^2 + 59 x + 8)/((x -  1)^9 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
    LinearRecurrence[{2,6,-14,-14,42,14,-70,0,70,-14,-42,14,14,-6,-2,1},{0,0,0,64,600,6912,29400,132864,381024,1139200,2613600,6177600,12269400,24912384,44717400,81636352},50] (* Harvey P. Dale, Nov 05 2016 *)

Formula

a(n) = 1/48*(n-2)^2*n^2*(2n^4 -16n^3 +50n^2 -84n +81 +(6n^2 -36n +63)*(-1)^n).
G.f.: -8x^4*(3x^11 +122x^10 +401x^9 +2508x^8 +3316x^7 +7780x^6 +5172x^5 +5236x^4 +1609x^3 +666x^2 +59x+8)/((x-1)^9*(x+1)^7).

A187240 Number of ways to place 8 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 32, 12944, 867328, 22522960, 328097824, 3209594096, 23460698496, 137045115696, 670158151296, 2835083100640, 10634260782464, 36033282628832, 111923478184128, 322412415716896, 869530617762304, 2212626780591008, 5346773160475488, 12336574243905648, 27303885052866048
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 16 x^4 (2520 x^22 + 47160 x^21 + 808884 x^20 + 7825113 x^19 + 54648810 x^18 + 265795497 x^17 + 965510650 x^16 + 2638742416 x^15 + 5598377728 x^14 + 9280070520 x^13 + 12189441400 x^12 + 12689244954 x^11 + 10499675700 x^10 + 6853251794 x^9 + 3501200340 x^8 + 1373620536 x^7 + 404231224 x^6 + 85610168 x^5 + 12313860 x^4 + 1085765 x^3 + 49362 x^2 + 797 x + 2) / ((x - 1)^17 (x + 1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^16/40320 - n^15/1080 + 7n^14/432 - 1153n^13/6480 + 53951n^12/38880 - 187277n^11/22680 + 106928053n^10/2721600 - 13957093n^9/90720 + 182160427n^8/362880 - 8821499n^7/6480 + 1176831457n^6/388800 - 490477369n^5/90720 + 8235592409n^4/1088640 - 726205757n^3/90720 + 1815275047n^2/302400 - 7953419n/2880 + 8491/16 + (-n^10/960 + 5n^9/144 - 307n^8/576 + 1793n^7/360 - 90571n^6/2880 + 201911n^5/1440 - 513865n^4/1152 + 477841n^3/480 - 4271471n^2/2880 + 1269721n/960 - 8491/16)*(-1)^n.
G.f.: -16x^5*(2520x^22 + 47160x^21 + 808884x^20 + 7825113x^19 + 54648810x^18 + 265795497x^17 + 965510650x^16 + 2638742416x^15 + 5598377728x^14 + 9280070520x^13 + 12189441400x^12 + 12689244954x^11 + 10499675700x^10 + 6853251794x^9 + 3501200340x^8 + 1373620536x^7 + 404231224x^6 + 85610168x^5 + 12313860x^4 + 1085765x^3 + 49362x^2 + 797x + 2)/((x-1)^17*(x+1)^11).
a(8) = A002465(8).
Showing 1-10 of 14 results. Next