A172129
Number of ways to place 5 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 112, 3368, 39680, 282248, 1444928, 5865552, 20014112, 59673360, 159698416, 391202680, 890095584, 1902427800, 3853570560, 7450556064, 13829016768, 24759442464, 42930138864, 72328779720, 118747638592
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1).
-
Rest[CoefficientList[Series[8*x^4*(14 +337*x +2574*x^2 +9871*x^3 +22040*x^4 +31334*x^5 +28808*x^6 +17522*x^7 +6666*x^8 +1593*x^9 +186*x^10 +15*x^11)/((1-x)^11*(1+x)^5), {x, 0, 50}], x]] (* Vincenzo Librandi, May 02 2013 *)
-
[(1/360)*(n-2)*( n*(1344 -2844*n +3326*n^2 -2592*n^3 +1435*n^4 -590*n^5 +177*n^6 -34*n^7 +3*n^8) -15*(54 -58*n +22*n^2 -3*n^3)*(n%2) ) for n in (1..50)] # G. C. Greubel, Apr 17 2022
A172135
Number of ways to place 4 nonattacking knights on an n X n board.
Original entry on oeis.org
0, 1, 18, 412, 4436, 26133, 111066, 376560, 1080942, 2732909, 6253408, 13204356, 26100160, 48819677, 87137934, 149398608, 247349946, 397168485, 620696612, 946921684, 1413726108, 2069939461, 2977725410, 4215337872
Offset: 1
- E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[0,1,18,412,4436] cat [(n^8 -54*n^6 +144*n^5 +1019*n^4 -5232*n^3 -2022*n^2 +51120*n -77184)/24: n in [6..50]]; // G. C. Greubel, Apr 19 2022
-
CoefficientList[Series[x*(1 +9*x +286*x^2 +1292*x^3 -345*x^4 +3099*x^5 -5142*x^6 +3606*x^7 -1162*x^8 -390*x^9 +690*x^10 -312*x^11 +48*x^12)/(1-x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, May 26 2013 *)
-
[0,1,18,412,4436] + [(n^8 -54*n^6 +144*n^5 +1019*n^4 -5232*n^3 -2022*n^2 +51120*n -77184)/24 for n in (6..50)] # G. C. Greubel, Apr 19 2022
A172227
Number of ways to place 4 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. Brazeal Slides on a Chessboard, Math Horizons, Vol. 27, pp. 24-27, April 2020.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Eric Weisstein's World of Mathematics, Grid Graph
- Wikipedia, Fairy chess piece
- Wikipedia, Wazir (chess)
-
CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A176886
Number of ways to place 6 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 16, 1960, 53744, 692320, 5599888, 33001664, 154215760, 603563504, 2052729728, 6229649352, 17202203680, 43870041520, 104531112928, 234870173248, 501360888160
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
- Index entries for linear recurrences with constant coefficients, signature (6, -8, -22, 69, -8, -176, 168, 182, -364, 0, 364, -182, -168, 176, 8, -69, 22, 8, -6, 1).
-
CoefficientList[Series[- 8 x^3 (90 x^15 + 1332 x^14 + 15417 x^13 + 93042 x^12 + 372376 x^11 + 983864 x^10 + 1834807 x^9 + 2423054 x^8 + 2310242 x^7 + 1568260 x^6 + 748519 x^5 + 239742 x^4 + 48236 x^3 + 5264 x^2 + 233 x + 2) / ((x - 1)^13 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A201862
Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.
Original entry on oeis.org
1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0
-
knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
*Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
*Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]
A187239
Number of ways to place 7 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 440, 38368, 1022320, 14082528, 126490352, 837543200, 4412818240, 19447224864, 74255991784, 251997948736, 774861621936, 2191005028672, 5764306674400, 14243327787456, 33309659739904, 74194554880960, 158241369977880, 324605935279648, 642894402918768
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- E. Weisstein, Bishops Problem, mathWorld.
- Index entries for linear recurrences with constant coefficients, signature (6, -6, -34, 84, 42, -322, 162, 603, -708, -540, 1260, 0, -1260, 540, 708, -603, -162, 322, -42, -84, 34, 6, -6, 1).
-
CoefficientList[Series[- 8 x^4 (630 x^18 + 10620 x^17 + 153525 x^16 + 1211058 x^15 + 6621390 x^14 + 24647178 x^13 + 66958554 x^12 + 133891418 x^11 + 202680754 x^10 + 232634698 x^9 + 204008900 x^8 + 135332502 x^7 + 67245306 x^6 + 24326718 x^5 + 6174582 x^4 + 1024222 x^3 + 99344 x^2 + 4466 x + 55) / ((x - 1)^15 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
A201245
Number of ways to place 4 non-attacking ferses on an n X n board.
Original entry on oeis.org
0, 0, 29, 661, 6285, 35378, 143787, 468529, 1301351, 3202970, 7170593, 14872997, 28969129, 53527866, 94568255, 160741233, 264175507, 421511954, 655152581, 994751765, 1478979173, 2157585442, 3093803379, 4367119121, 6076449375, 8343762538, 11318183177
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, p.415
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
-
CoefficientList[Series[- x^2 (2 x^8 - 55 x^7 + 230 x^6 - 254 x^5 - 225 x^4 + 173 x^3 + 1380 x^2 + 400 x + 29)/(x-1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)
A172139
Number of ways to place 4 nonattacking zebras on an n X n board.
Original entry on oeis.org
0, 1, 126, 1168, 7334, 35749, 137970, 438984, 1208246, 2969389, 6662480, 13873100, 27144408, 50389581, 89424014, 152638280, 251834530, 403250693, 628798516, 957543164, 1427453780, 2087456085, 2999819778, 4242915176
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
CoefficientList[Series[x(1+117*x+70*x^2+1274*x^3+1333*x^4-2109*x^5-462*x^6 +8858*x^7-17006*x^8+15166*x^9-6838*x^10+1478*x^11-650*x^12+760*x^13-376*x^14 +64*x^15)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
[0,1,126,1168,7334,35749,137970,438984] + [(n^8 -54*n^6 +240*n^5 +827*n^4 -8592*n^3 +10362*n^2 +75600*n -204864)/24 for n in (9..50)] # G. C. Greubel, Apr 19 2022
A177757
Number of ways to place 4 nonattacking bishops on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 64, 600, 6912, 29400, 132864, 381024, 1139200, 2613600, 6177600, 12269400, 24912384, 44717400, 81636352, 135945600, 229423104, 360561024, 572788800, 859685400, 1301766400, 1881864600, 2740725504, 3840540000
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
- Index entries for linear recurrences with constant coefficients, signature (2,6,-14,-14,42,14,-70,0,70,-14,-42,14,14,-6,-2,1).
-
CoefficientList[Series[- 8 x^3 (3 x^11 + 122 x^10 + 401 x^9 + 2508 x^8 + 3316 x^7 + 7780 x^6 + 5172 x^5 + 5236 x^4 + 1609 x^3 + 666 x^2 + 59 x + 8)/((x - 1)^9 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
LinearRecurrence[{2,6,-14,-14,42,14,-70,0,70,-14,-42,14,14,-6,-2,1},{0,0,0,64,600,6912,29400,132864,381024,1139200,2613600,6177600,12269400,24912384,44717400,81636352},50] (* Harvey P. Dale, Nov 05 2016 *)
A187240
Number of ways to place 8 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 32, 12944, 867328, 22522960, 328097824, 3209594096, 23460698496, 137045115696, 670158151296, 2835083100640, 10634260782464, 36033282628832, 111923478184128, 322412415716896, 869530617762304, 2212626780591008, 5346773160475488, 12336574243905648, 27303885052866048
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
- E. Weisstein, Bishops Problem, MathWorld
- Index entries for linear recurrences with constant coefficients, signature (6, -4, -46, 95, 116, -496, 44, 1331, -990, -2068, 2838, 1683, -4488, 0, 4488, -1683, -2838, 2068, 990, -1331, -44, 496, -116, -95, 46, 4, -6, 1).
-
CoefficientList[Series[- 16 x^4 (2520 x^22 + 47160 x^21 + 808884 x^20 + 7825113 x^19 + 54648810 x^18 + 265795497 x^17 + 965510650 x^16 + 2638742416 x^15 + 5598377728 x^14 + 9280070520 x^13 + 12189441400 x^12 + 12689244954 x^11 + 10499675700 x^10 + 6853251794 x^9 + 3501200340 x^8 + 1373620536 x^7 + 404231224 x^6 + 85610168 x^5 + 12313860 x^4 + 1085765 x^3 + 49362 x^2 + 797 x + 2) / ((x - 1)^17 (x + 1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
Showing 1-10 of 14 results.
Comments