cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.

Original entry on oeis.org

1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2

Views

Author

Jean-François Alcover, Jul 01 2014

Keywords

Comments

Essentially the same digit sequence as A239798, A019863 and A019827. - R. J. Mathar, Jul 03 2014
The minimal polynomial of this constant is x^2 - 11*x - 1. - Joerg Arndt, Jan 01 2017

Examples

			11.09016994374947424102293417182819058860154589902881431067724311352630...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^5, 10, 103] // First
  • PARI
    (5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016

Formula

Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A333345 Decimal expansion of (11 + sqrt(85))/2.

Original entry on oeis.org

1, 0, 1, 0, 9, 7, 7, 2, 2, 2, 8, 6, 4, 6, 4, 4, 3, 6, 5, 5, 0, 0, 1, 1, 3, 7, 1, 4, 0, 8, 8, 1, 3, 9, 6, 5, 7, 8, 6, 2, 3, 4, 0, 2, 5, 2, 4, 3, 6, 1, 2, 3, 2, 0, 0, 4, 0, 0, 3, 8, 7, 6, 1, 0, 2, 7, 2, 1, 3, 3, 5, 5, 1, 3, 4, 0, 0, 9, 3, 7, 7, 3, 0, 3, 8, 3, 9, 4, 7, 0, 4, 5, 3, 9, 6, 6, 4, 0, 2, 8, 2, 4, 7, 0, 1, 6, 9, 9
Offset: 2

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

This constant is Heuberger and Wagner's lambda. They consider the number of maximum matchings a tree of n vertices may have, and show that the largest number of maximum matchings (A333347) grows as O(lambda^(n/7)) (see A333346 for the 7th root). Lambda is the larger eigenvalue of matrix M = [8,3/5,3] which is raised to a power when counting matchings in a chain of "C" parts in the trees (their lemma 6.2).
Apart from the first digit the same as A176522. - R. J. Mathar, Apr 03 2020

Examples

			10.1097722286...
		

Crossrefs

Sequences growing as this power: A147841, A190872, A333344.
Cf. A333346 (seventh root), A176522.

Programs

  • Mathematica
    With[{$MaxExtraPrecision = 1000}, First@ RealDigits[(11 + Sqrt[85])/2, 10, 105]] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    (11 + sqrt(85))/2 \\ Michel Marcus, May 21 2020

Formula

Equals continued fraction [10; 9] = 10 + 1/(9 + 1/(9 + 1/(9 + 1/...))). - Peter Luschny, Mar 15 2020

A261391 a(n) = n^5 + 5*n^3 + 5*n.

Original entry on oeis.org

0, 11, 82, 393, 1364, 3775, 8886, 18557, 35368, 62739, 105050, 167761, 257532, 382343, 551614, 776325, 1069136, 1444507, 1918818, 2510489, 3240100, 4130511, 5206982, 6497293, 8031864, 9843875, 11969386, 14447457, 17320268, 20633239, 24435150, 28778261, 33718432, 39315243, 45632114
Offset: 0

Views

Author

Raphael Ranna, Aug 17 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^5 - 1/(n-th metallic mean)^5, see link to Wikipedia.

Crossrefs

Programs

  • Mathematica
    Array[#^5 + 5 #^3 + 5 # &, 34] (* Michael De Vlieger, Aug 18 2015 *)
    Table[n^5 + 5*n^3 + 5*n, {n,0, 50}] (* G. C. Greubel, Aug 21 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,11,82,393,1364,3775},40] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    concat(0, Vec(x*(11*x^4+16*x^3+66*x^2+16*x+11)/(x-1)^6 + O(x^100))) \\ Colin Barker, Aug 18 2015

Formula

a(n) = ( (n+sqrt(n^2+4))/2 )^5 - 1/( (n+sqrt(n^2+4))/2 )^5.
a(n) = -a(-n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Colin Barker, Aug 18 2015
G.f.: x*(11*x^4+16*x^3+66*x^2+16*x+11) / (x-1)^6. - Colin Barker, Aug 18 2015
E.g.f.: (x^5 + 15*x^4 + 70*x^3 + 120*x^2 + 71*x + 11)*e^x. - G. C. Greubel, Aug 21 2015

Extensions

Offset changed from 1 to 0, initial 0 added and b-file adapted from Bruno Berselli, Aug 25 2015

A261540 a(n) = n^7 + 7*n^5 + 14*n^3 + 7*n.

Original entry on oeis.org

0, 29, 478, 4287, 24476, 101785, 337434, 946043, 2333752, 5206581, 10714070, 20633239, 37597908, 65378417, 109216786, 176222355, 275832944, 420346573, 625528782, 911300591, 1302512140, 1829807049, 2530582538, 3450050347, 4642403496, 6172093925, 8115226054
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^7 - 1/(n-th metallic mean)^7, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n^7 + 7*n^5 + 14*n^3 + 7*n: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
    
  • Mathematica
    Table[n^7 + 7 n^5 + 14 n^3 + 7 n, {n, 0, 30}] (* Bruno Berselli, Aug 24 2015 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 29, 478, 4287, 24476, 101785, 337434, 946043}, 30] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    a(n)=n^7+7*n^5+14*n^3+7*n \\ Charles R Greathouse IV, Aug 24 2015
  • Sage
    [n^7+7*n^5+14*n^3+7*n for n in (0..30)] # Bruno Berselli, Aug 24 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^7 - 1/( (n+sqrt(n^2+4))/2 )^7.
G.f.: x*(29 + 246*x + 1275*x^2 + 1940*x^3 + 1275*x^4 + 246*x^5 + 29*x^6)/(1 - x)^8. - Bruno Berselli, Aug 24 2015

Extensions

Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A317052 Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-9*x-x^2) are given by the sequence generated by the row sums (see A099371).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 9.109772228646443655... (a metallic mean), when n approaches infinity; (see A176522: ((9+sqrt(85))/2)).

Examples

			Triangle begins:
  1;
  9;
  81, 1;
  729, 18;
  6561, 243, 1;
  59049, 2916, 27;
  531441, 32805, 486, 1;
  4782969, 354294, 7290, 36;
  43046721, 3720087, 98415, 810, 1;
  387420489, 38263752, 1240029, 14580, 45;
  3486784401, 387420489, 14880348, 229635, 1215, 1;
  31381059609, 3874204890, 172186884, 3306744, 25515, 54;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.

Crossrefs

Row sums give A099371.
Cf. A001019 (column 0), A053540 (column 1), A081139 (column 2), A173187 (column 3), A173000 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A261574 a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).

Original entry on oeis.org

0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
  • Mathematica
    Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
  • PARI
    concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015

Extensions

Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023
Showing 1-8 of 8 results.