cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A180166 Row sums of triangle A180165.

Original entry on oeis.org

1, 3, 7, 18, 51, 161, 560, 2123, 8691, 38142, 178407, 885041, 4636948, 25564727, 147848651, 894448186, 5646589363, 37115577265, 253517232120, 1796241061843, 13180234725987, 100009217354694, 783656713398383, 6333420109604593, 52732283687195340, 451831859926030943
Offset: 1

Views

Author

Gary W. Adamson, Aug 14 2010

Keywords

Examples

			a(5) = 151 = sum of row 5 terms of triangle A180165: (1 + 5 + 15 + 22 + 8).
		

Crossrefs

Row sums of A180165.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n, x^k*(1+x)/(1-k*x-k*x^2) + O(x*x^n)))} \\ Andrew Howroyd, Apr 13 2021

Formula

G.f.: Sum_{k>=1} x^k*(1 + x)/(1 - k*x - k*x^2). - Andrew Howroyd, Apr 13 2021

Extensions

a(8) and a(11) corrected and a(14) and beyond from Andrew Howroyd, Apr 13 2021

A028859 a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0

Views

Author

Keywords

Comments

Number of words of length n without adjacent 0's from the alphabet {0,1,2}. For example, a(2) counts 01,02,10,11,12,20,21,22. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 12 2001
Individually, both this sequence and A002605 are convergents to 1+sqrt(3). Mutually, both sequences are convergents to 2+sqrt(3) and 1+sqrt(3)/2. - Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Nov 04 2001 [Can someone clarify what is meant by the obscure second phrase, "Mutually..."? - M. F. Hasler, Aug 06 2018]
Add a loop at two vertices of the graph C_3=K_3. a(n) counts walks of length n+1 between these vertices. - Paul Barry, Oct 15 2004
Prefaced with a 1 as (1 + x + 3x^2 + 8x^3 + 22x^4 + ...) = 1 / (1 - x - 2x^2 - 3x^3 - 5x^4 - 8x^5 - 13x^6 - 21x^7 - ...). - Gary W. Adamson, Jul 28 2009
Equals row 2 of the array in A180165, and the INVERTi transform of A125145. - Gary W. Adamson, Aug 14 2010
Pisano period lengths: 1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1, 144, 9, 180, 24, .... - R. J. Mathar, Aug 10 2012
Also the number of independent vertex sets and vertex covers in the n-centipede graph. - Eric W. Weisstein, Sep 21 2017
From Gus Wiseman, May 19 2020: (Start)
Conjecture: Also the number of length n + 1 sequences that cover an initial interval of positive integers and whose non-adjacent parts are weakly decreasing. For example, (3,2,3,1,2) has non-adjacent pairs (3,3), (3,1), (3,2), (2,1), (2,2), (3,2), all of which are weakly decreasing, so is counted under a(11). The a(1) = 1 through a(3) = 8 sequences are:
(1) (11) (111)
(12) (121)
(21) (211)
(212)
(221)
(231)
(312)
(321)
The case of compositions is A333148, or A333150 for strict compositions, or A333193 for strictly decreasing parts. A version for ordered set partitions is A332872. Standard composition numbers of these compositions are A334966. Unimodal normal sequences are A227038. See also: A001045, A001523, A032020, A100471, A100881, A115981, A329398, A332836, A332872.
(End)
Number of 2-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
The number of ternary strings of length n not containing 00. Complement of A186244. - R. J. Mathar, Feb 13 2022

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).

Crossrefs

Cf. A155020 (same sequence with term 1 prepended).
Cf. A002605.

Programs

  • Haskell
    a028859 n = a028859_list !! n
    a028859_list =
       1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Maple
    a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n],n=0..24); # Emeric Deutsch
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    Table[2^(n - 1) Hypergeometric2F1[(1 - n)/2, -n/2, -n, -2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
    LinearRecurrence[{2, 2}, {1, 3}, 20] (* Eric W. Weisstein, Jun 14 2017 *)
  • PARI
    a(n)=([1,3;1,1]^n*[2;1])[2,1] \\ Charles R Greathouse IV, Mar 27 2012
    
  • PARI
    A028859(n)=([1,1]*[2,2;1,0]^n)[1] \\ M. F. Hasler, Aug 06 2018

Formula

a(n) = a(n-1) + A052945(n) = A002605(n) + A002605(n-1).
G.f.: -(x+1)/(2*x^2+2*x-1).
a(n) = [(1+sqrt(3))^(n+2)-(1-sqrt(3))^(n+2)]/(4*sqrt(3)). - Emeric Deutsch, Feb 01 2005
If p[i]=fibonacci(i+1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n) = 3^n - A186244(n). - Toby Gottfried, Mar 07 2013
E.g.f.: exp(x)*(cosh(sqrt(3)*x) + 2*sinh(sqrt(3)*x)/sqrt(3)). - Stefano Spezia, Mar 02 2024

Extensions

Definition completed by M. F. Hasler, Aug 06 2018

A125145 a(n) = 3a(n-1) + 3a(n-2). a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 15, 57, 216, 819, 3105, 11772, 44631, 169209, 641520, 2432187, 9221121, 34959924, 132543135, 502509177, 1905156936, 7222998339, 27384465825, 103822392492, 393620574951, 1492328902329, 5657848431840, 21450532002507
Offset: 0

Views

Author

Tanya Khovanova, Jan 11 2007

Keywords

Comments

Number of aa-avoiding words of length n on the alphabet {a,b,c,d}.
Equals row 3 of the array shown in A180165, the INVERT transform of A028859 and the INVERTi transform of A086347. - Gary W. Adamson, Aug 14 2010
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family related by compositions of C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for A000108; its inverse Cinv(x) = x(1-x); and the special Mobius transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x. Cf. A091867.
O.g.f.: G(x) = P[P[P[-Cinv(-x),-1],-1],-1] = P[-Cinv(-x),-3] = x*(1+x)/[1-3x(1-x)]= x*A125145(x).
Ginv(x) = -C[-P(x,3)] = [-1 + sqrt(1+4x/(1+3x))]/2 = x*A104455(-x).
G(-x) = -x(1-x) * [ 1 - 3*[x*(1+x)] + 3^2*[x*(1+x)]^2 - ...] , and so this array is related to finite differences in the row sums of A030528 * Diag((-3)^1,3^2,(-3)^3,..). (Cf. A146559.)
The inverse of -G(-x) is C[-P(-x,3)]= [1 - sqrt(1-4x/(1-3x))]/2 = x*A104455(x). (End)
Number of 3-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020

Crossrefs

Cf. A028859 = a(n+2) = 2 a(n+1) + 2 a(n); A086347 = On a 3 X 3 board, number of n-move routes of chess king ending at a given side cell. a(n) = 4a(n-1) + 4a(n-2).
Cf. A128235.
Cf. A180165, A028859, A086347. - Gary W. Adamson, Aug 14 2010

Programs

  • Haskell
    a125145 n = a125145_list !! n
    a125145_list =
       1 : 4 : map (* 3) (zipWith (+) a125145_list (tail a125145_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    I:=[1,4]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    a[0]:=1: a[1]:=4: for n from 2 to 27 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n],n=0..27); # Emeric Deutsch, Feb 27 2007
    A125145 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]) ;
        else
            3*(procname(n-1)+procname(n-2)) ;
        end if;
    end proc: # R. J. Mathar, Feb 13 2022
  • Mathematica
    nn=23;CoefficientList[Series[(1+x)/(1-3x-3x^2),{x,0,nn}],x] (* Geoffrey Critzer, Feb 09 2014 *)
    LinearRecurrence[{3,3},{1,4},30] (* Harvey P. Dale, May 01 2022 *)

Formula

G.f.: (1+z)/(1-3z-3z^2). - Emeric Deutsch, Feb 27 2007
a(n) = (5*sqrt(21)/42 + 1/2)*(3/2 + sqrt(21)/2)^n + (-5*sqrt(21)/42 + 1/2)*(3/2 - sqrt(21)/2)^n. - Antonio Alberto Olivares, Mar 20 2008
a(n) = A030195(n)+A030195(n+1). - R. J. Mathar, Feb 13 2022
E.g.f.: exp(3*x/2)*(21*cosh(sqrt(21)*x/2) + 5*sqrt(21)*sinh(sqrt(21)*x/2))/21. - Stefano Spezia, Aug 04 2022
a(n) = (((3 + sqrt(21)) / 2)^(n+2) - ((3 - sqrt(21)) / 2)^(n+2)) / (3 * sqrt(21)). - Werner Schulte, Dec 17 2024

A340156 Square array read by upward antidiagonals: T(n, k) is the number of n-ary strings of length k containing 00.

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 9, 40, 79, 43, 1, 11, 65, 205, 281, 94, 1, 13, 96, 421, 991, 963, 201, 1, 15, 133, 751, 2569, 4612, 3217, 423, 1, 17, 176, 1219, 5531, 15085, 20905, 10547, 880, 1, 19, 225, 1849, 10513, 39186, 86241, 92935, 34089, 1815
Offset: 2

Views

Author

Robert P. P. McKone, Dec 29 2020

Keywords

Examples

			For n = 3 and k = 4, there are 21 strings: {0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022, 0100, 0200, 1000, 1001, 1002, 1100, 1200, 2000, 2001, 2002, 2100, 2200}.
Square table T(n,k):
     k=2:  k=3:  k=4:   k=5:    k=6:     k=7:
n=2:   1     3     8     19      43       94
n=3:   1     5    21     79     281      963
n=4:   1     7    40    205     991     4612
n=5:   1     9    65    421    2569    15085
n=6:   1    11    96    751    5531    39186
n=7:   1    13   133   1219   10513    87199
n=8:   1    15   176   1849   18271   173608
n=9:   1    17   225   2665   29681   317817
		

Crossrefs

Cf. A008466 (row 2), A186244 (row 3), A000567 (column 4).
Cf. A180165 (not containing 00), A340242 (containing 000).

Programs

  • Mathematica
    m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
    T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
    Reverse[Table[T[n, k - n + 2, 2], {k, 2, 11}, {n, 2, k}], 2] // Flatten (* Robert P. P. McKone, Jan 26 2021 *)

Formula

T(n, k) = n^k - A180165(n+1,k-1), where A180165 in the number of strings not containing 00.
m(2) = [1 - 1/n, 1/n, 0; 1 - 1/n, 0, 1/n; 0, 0, 1], is the probability/transition matrix for two consecutive "0" -> "containing 00".
Showing 1-4 of 4 results.