A384947 Positive integers m for which A183136(m) != f(m), where f(m) = floor( (m*(m+1)/2)/phi - m/2 + 1/(2*phi) ) and phi = (1+sqrt(5))/2 is the golden ratio.
15, 18, 36, 39, 41, 47, 49, 52, 91, 94, 96, 102, 103, 104, 107, 109, 123, 125, 128, 130, 136, 138, 141, 235, 238, 240, 246, 247, 248, 251, 252, 253, 267, 268, 269, 272, 273, 274, 277, 280, 281, 282, 285, 287, 303, 306, 322, 324, 327, 328
Offset: 1
Keywords
Examples
41 is term, because A183136(41) = 512 != 511 = floor(((41^2+1)*phi - 41) / (2*phi^2)).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Hoang Xuan Thanh)
Programs
-
Mathematica
PositionIndex[MapIndexed[# != Floor[PolygonalNumber[#2[[1]]]/GoldenRatio - #2[[1]]/2 + 1/(2*GoldenRatio)] &, Accumulate[Floor[Range[500]/GoldenRatio]]]][True] (* Paolo Xausa, Jun 20 2025 *)
Comments