A353601 Square array read by downward antidiagonals: A(n, 1) = A185103(n) and A(n, k) = A185103(A(n, k-1)) for k > 1.
5, 7, 8, 18, 65, 17, 325, 99, 38, 7, 1432, 485, 1445, 18, 37, 2050625, 5357, 27493, 325, 18, 18, 1299108307, 12807125, 9077774, 1432, 325, 325, 65
Offset: 2
Examples
Array starts as follows: 5, 7, 18, 325, 1432, ... 8, 65, 99, 485, 5357, ... 17, 38, 1445, 27493, 9077774, ... 7, 18, 325, 1432, 2050625, ... 37, 18, 325, 1432, 2050625, ... ...
Crossrefs
Cf. A185103.
Programs
-
PARI
a185103(n) = for(b=2, oo, if(Mod(b, n^2)^(n-1)==1, return(b))) a(n, k) = if(k==1, return(a185103(n)), return(a185103(a(n, k-1)))) array(rows, cols) = for(x=2, rows+1, for(y=1, cols, print1(a(x, y), ", ")); print("")) array(5, 5) \\ Print initial 5 rows and 5 columns of array
-
Python
from functools import lru_cache def A185103(n): k, n2 = 2, n*n while pow(k, n-1, n2) != 1: k += 1 return k @lru_cache() def T(n, k): if k == 1: return A185103(n) return A185103(T(n, k-1)) def auptodiag(maxd): return [T(d+2-j, j) for d in range(1, maxd+1) for j in range(d, 0, -1)] print(auptodiag(6)) # Michael S. Branicky, Apr 29 2022
Extensions
a(16)-a(28) from Michael S. Branicky, Apr 29 2022
Comments