cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086578 a(n) = 7*(10^n - 1).

Original entry on oeis.org

0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+7) = 7.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.
Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), this sequence (m=7), A100412 (m=8).

Programs

  • Magma
    [7*(10^n -1): n in [0..20]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    LinearRecurrence[{11,-10}, {0,63}, 31] (* G. C. Greubel, Apr 14 2023 *)
  • SageMath
    [7*(10^n -1) for n in range(21)] # G. C. Greubel, Apr 14 2023

Formula

a(n) = 7*9*A002275(n) = 7*A002283(n).
R(a(n)) = A086575(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 63*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 7*(exp(10*x) - exp(x)). - G. C. Greubel, Apr 14 2023

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A100412 a(n) = 8*10^n - 7.

Original entry on oeis.org

1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993
Offset: 0

Views

Author

Farideh Firoozbakht, Dec 08 2004

Keywords

Comments

Also: Numbers n such that n is reversal(n)-th odd number. (This was the original definition. - Ed.)
All semiprimes in this sequence (n = 2, 4, 7, 9, 11, 16, 18, 23, 31, 32, 40, ...) are in A136543. - M. F. Hasler, Nov 03 2012

Examples

			793 is in the sequence because 793 is 397th odd number.
1 is in the sequence because 1 is the 1st odd number. - _M. F. Hasler_, Nov 03 2012
		

Crossrefs

Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), A086578 (m=7), this sequence (m=8).

Programs

  • Magma
    [8*10^n -7: n in [0..20]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    Table[8*10^n-7, {n,0,20}]
  • Maxima
    A100412(n):=8*10^n-7$
    makelist(A100412(n),n,0,17); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    Vec((1+62*x)/((1-x)*(1-10*x)) + O(x^100)) \\ Colin Barker, Oct 14 2014
    
  • SageMath
    [8*10^n -7 for n in range(21)] # G. C. Greubel, Apr 14 2023

Formula

From Colin Barker, Oct 14 2014: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3).
G.f.: (1+62*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 8*exp(10*x) - 7*exp(x). - G. C. Greubel, Apr 14 2023

Extensions

Edited and extended to offset 0 by M. F. Hasler, Nov 03 2012

A117978 Triangular numbers with only even digits.

Original entry on oeis.org

0, 6, 28, 66, 406, 666, 820, 2080, 2628, 8646, 28680, 42486, 48828, 64620, 66066, 80200, 84666, 200028, 204480, 228826, 264628, 288420, 426426, 446040, 468028, 484620, 600060, 626640, 644680, 686206, 828828, 886446, 2222886, 2248260, 2862028, 2888406
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 03 2006

Keywords

Comments

There are infinitely many terms. For example all 88...88 6 44...44 6 with an equal number of 8's and 4's (their triangular indices being A185127). - Shyam Sunder Gupta, Aug 16 2025

Crossrefs

Intersection of A000217 and A014263.

Programs

Extensions

Corrected (a(32) was in error) and extended by Harvey P. Dale, Oct 21 2011

A259050 Numbers k such that 3*R_k + 10^k - 2 is prime, where R_k = 11...11 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 2, 4, 6, 94, 160, 360, 1470, 2898, 3094, 3112, 15698, 17956, 42262, 111032, 249550
Offset: 1

Views

Author

Robert Price, Jun 17 2015

Keywords

Comments

Also, numbers k such that (4*10^k - 7)/3 is prime.
Terms from Kamada data.
a(16) > 2*10^5.
The corresponding primes are a subset of the palindromes A185127 with a(n)+1 digits [1, 3 repeated a(n)-1 times, 1]: 11, 131, 13331, 1333331, ..., which can be expressed as 2*6-1, 2*66-1, 2*6666-1, 2*666666-1, ... . - Hugo Pfoertner, Jul 22 2020

Examples

			For k=4, 3*R_4 + 10^k - 2 = 3333 + 10000 - 2 = 13331 which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime((4*10^n-7) div 3)]; // Vincenzo Librandi, Jun 18 2015
    
  • Mathematica
    Select[Range[0, 200000], PrimeQ[(4*10^#-7)/3] &]
  • PARI
    for(k=1,1500,if(ispseudoprime(4*(10^k-1)/3-1),print1(k,", "))) \\ Hugo Pfoertner, Jul 22 2020

Extensions

a(16) from Kamada data by Tyler Busby, May 03 2024

A069882 Numbers n such that n and 2n-1 are both palindromes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 66, 666, 6666, 66666, 666666, 6666666, 66666666, 666666666, 6666666666, 66666666666, 666666666666, 6666666666666, 66666666666666, 666666666666666, 6666666666666666, 66666666666666666, 666666666666666666
Offset: 1

Views

Author

Amarnath Murthy, Apr 30 2002

Keywords

Comments

From Chai Wah Wu, Jul 20 2020: (Start)
Theorem: a(n) = 2*(10^(n-5)-1)/3 for n > 5.
Proof: clearly 2*(10^m-1)/3 are terms of this sequence. Next we show that all terms > 10 are of the form 2*(10^m-1)/3. Let k > 10 be a term of the sequence. Let x be the first digit (and thus also the last digit) of k. If x <> 6 then it is easy to show that the first and last digit of 2k-1 will not be the same. Thus x = 6. Let the digits of k be written as 6y****y6. Similarly if y <> 6 then again the second digit of 2k-1 will not be the same as the second to last digit of 2k-1. Continuing in this manner, this shows that k written in decimal is a sequence of 6's.
(End)

Examples

			66 is a member as 2*66 - 1 = 131 is also a palindrome.
		

Crossrefs

Formula

From Chai Wah Wu, Jul 20 2020: (Start)
a(n) = 2*(10^(n-5)-1)/3 for n > 5.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 7.
G.f.: x*(50*x^6 - 9*x^5 - 9*x^4 - 9*x^3 - 9*x^2 - 9*x + 1)/((x - 1)*(10*x - 1)).
(End)

Extensions

More terms from Hans Havermann, Jul 06 2002
Showing 1-5 of 5 results.