A180278
Smallest nonnegative integer k such that k^2 + 1 has exactly n distinct prime factors.
Original entry on oeis.org
0, 1, 3, 13, 47, 447, 2163, 24263, 241727, 2923783, 16485763, 169053487, 4535472963, 36316463227, 879728844873, 4476534430363, 119919330795347, 1374445897718223, 106298577886531087
Offset: 0
a(2) = 3 because the 2 distinct prime factors of 3^2 + 1 are {2, 5};
a(10) = 16485763 because the 10 distinct prime factors of 16485763^2 + 1 are {2, 5, 13, 17, 29, 37, 41, 73, 149, 257}.
-
a[n_] := a[n] = Module[{k = 1}, If[n == 0, Return[0]]; Monitor[While[PrimeNu[k^2 + 1] != n, k++]; k, {n, k}]]; Table[a[n], {n, 0, 8}] (* Robert P. P. McKone, Sep 13 2023 *)
-
a(n)=for(k=0, oo, if(omega(k^2+1) == n, return(k))) \\ Andrew Howroyd, Sep 12 2023
-
from itertools import count
from sympy import factorint
def A180278(n):
return next(k for k in count() if len(factorint(k**2+1)) == n) # Pontus von Brömssen, Sep 12 2023
a(9), a(10) and example corrected; a(11) added by
Donovan Johnson, Aug 27 2012
A006278
a(n) is the product of the first n primes congruent to 1 (mod 4).
Original entry on oeis.org
5, 65, 1105, 32045, 1185665, 48612265, 2576450045, 157163452745, 11472932050385, 1021090952484265, 99045822390973705, 10003628061488344205, 1090395458702229518345, 123214686833351935572985
Offset: 1
-
maxN=15; pLst={}; k=0; While[Length[pLst]Harvey P. Dale, Jun 16 2013 *)
-
tree(v)=my(t=#v); if(t<4, factorback(v), tree(v[1..t\2])*tree(v[t\2+1..t]));
a(n,x=9*n\4+2)=my(P=select(p->p%4==1, primes(x))); if(#PCharles R Greathouse IV, Jan 08 2018
A257366
Smallest integer m such that m^2 + 1 has exactly n prime factors, counted with multiplicity.
Original entry on oeis.org
1, 3, 7, 43, 57, 307, 1068, 2943, 12943, 45807, 110443, 670807, 2733307, 25670807, 113561432, 123327057, 657922943, 17213170807, 7200891693, 148802454193, 1120482141693
Offset: 1
a(1)=1 because 1^2+1=2(prime),
a(2)=3 because 3^2+1=10=2*5,
a(3)=7 because 7^2+1=50=2*2*5,
...............
a(14)=25670807 because 25670807^2+1=2*5^11*149*45289.
A282686
Least sum of two proper prime powers (A246547) that is the product of n distinct primes.
Original entry on oeis.org
13, 33, 130, 966, 14322, 81510, 3530730, 117535110, 2211297270, 131031070170, 1295080356570, 163411918786830, 3389900689405230, 414524121952915590, 2951531806477464210, 754260388389042905370
Offset: 1
a(1) = 13 = 2^2 + 3^2.
a(2) = 33 = 5^2 + 2^3 = 3 * 11.
a(3) = 130 = 3^2 + 11^2 = 2 * 5 * 13.
a(4) = 966 = 5^3 + 29^2 = 2 * 3 * 7 * 23.
a(5) = 14322 = 17^3 + 97^2 = 2 * 3 * 7 * 11 * 31.
a(6) = 81510 = 29^3 + 239^2 = 2 * 3 * 5 * 11 * 13 * 19.
a(7) = 3530730 = 41^4 + 89^3 = 2 * 3 * 5 * 7 * 17 * 23 * 43.
a(8) = 117535110 = 461^3 + 4423^2 = 2 * 3 * 5 * 7 * 11 * 17 * 41 * 73.
From _Jon E. Schoenfield_, Mar 14 2017: (Start)
a(9) = 2211297270 = 1301^3 + 3037^2 = 2 * 3 * 5 * 7 * 13 * 17 * 29 * 31 * 53.
a(10) = 131031070170 = 1361^3 + 358483^2 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 43 * 47 * 127. (End)
From _Giovanni Resta_, Mar 14 2017: (Start)
a(11) = 810571^2 + 8609^3,
a(12) = 12694849^2 + 13109^3. (End)
From _Jon E. Schoenfield_, Mar 18 2017: (Start)
a(13) = 24537703^2 + 140741^3.
a(14) = 639414679^2 + 178349^3.
a(15) = 1632727069^2 + 658649^3. (End)
a(16) = 1472015189^2 + 9094049^3. - _Jon E. Schoenfield_, Mar 19 2017
-
N:= 1.2*10^8: # to get all terms <= N
PP:= {seq(seq(p^k,k=2..floor(log[p](N))), p = select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]))}:
PP:= sort(convert(PP,list)):
A:= 'A':
for i from 1 to nops(PP) do
for j from 1 to i do
Q:= PP[i]+PP[j];
if Q > N then break fi;
F:= ifactors(Q)[2];
if max(seq(f[2],f=F))>1 then next fi;
m:= nops(F);
if not assigned(A[m]) or A[m] > Q then A[m]:= Q fi
od od:
seq(A[i],i=1..max(map(op,[indices(A)]))); # Robert Israel, Mar 01 2017
-
(* first 8 terms *) mx = 1.2*^8; a = 0 Range[8] + mx; p = Sort@ Flatten@ Table[ p^Range[2, Log[p, mx]], {p, Prime@ Range@ PrimePi@ Sqrt@ mx}]; Do[ j=1; While[j <= i && (v = p[[i]] + p[[j]]) < mx, f = FactorInteger@v; If[Max[Last /@ f] == 1, c = Length@f; If[c < 9 && v < a[[c]], a[[c]] = v]]; j++], {i, Length@p}]; a (* Giovanni Resta, Mar 19 2017 *)
-
do(lim)=my(v=List(),u=v,t,f); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && tif(k==oo,"?",k), v) \\ Charles R Greathouse IV, Mar 19 2017
-
do(lim)=my(v=List(),u=v,t,f,p2); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=3,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && tlim, break); f=factor(t)[,2]; if(vecmax(f)==1 && tlim, break); f=factor(t)[,2]; if(vecmax(f)==1 && tif(k==oo,"?",k), v) \\ Charles R Greathouse IV, Mar 19 2017
Showing 1-4 of 4 results.
Comments