cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048990 Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = binomial(4*n, 2*n)/(2*n+1).

Original entry on oeis.org

1, 2, 14, 132, 1430, 16796, 208012, 2674440, 35357670, 477638700, 6564120420, 91482563640, 1289904147324, 18367353072152, 263747951750360, 3814986502092304, 55534064877048198, 812944042149730764, 11959798385860453492, 176733862787006701400
Offset: 0

Views

Author

Keywords

Comments

With interpolated zeros, this is C(n)*(1+(-1)^n)/2 with g.f. given by 2/(sqrt(1+4x) + sqrt(1-4x)). - Paul Barry, Sep 09 2004
Self-convolution of a(n)/4^n gives Catalan numbers (A000108). - Vladimir Reshetnikov, Oct 10 2016
a(n) is the number of grand Dyck paths from (0,0) to (4n,0) that avoid vertices (2k,0) for all odd k > 0. - Alexander Burstein, May 11 2021
a(n) is the number of lattice paths from (0,0) to (2n,2n) with steps (1,0) and (0,1) that avoid the points (1,1), (3,3), (5,5), ..., (2n-1,2n-1). This is Example 2.5 of the Shapiro reference. - Lucas A. Brown, Jul 24 2025

Examples

			sqrt(2*x^-1*(1-sqrt(1-x))) = 1 + (1/8)*x + (7/128)*x^2 + (33/1024)*x^3 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := CatalanNumber[2n]; Array[a, 18, 0] (* Or *)
    CoefficientList[ Series[ Sqrt[2]/Sqrt[1 + Sqrt[1 - 16 x]], {x, 0, 17}], x] (* Robert G. Wilson v *)
    CatalanNumber[Range[0,40,2]] (* Harvey P. Dale, Mar 19 2015 *)
  • MuPAD
    combinat::dyckWords::count(2*n) $ n = 0..28 // Zerinvary Lajos, Apr 14 2007
    
  • PARI
    /* G.f.: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ): */
    {a(n)=local(A=1+x); for(i=1, n, A=exp(x*A^4 + intformal(A^4 +x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 09 2013
    for(n=0, 30, print1(a(n), ", "))
    
  • Sage
    A048990 = lambda n: hypergeometric([1-2*n,-2*n],[2],1)
    [Integer(A048990(n).n()) for n in range(20)] # Peter Luschny, Sep 22 2014

Formula

a(n) = 2 * A065097(n) - A000007(n).
G.f.: A(x) = sqrt((1/8)*x^(-1)*(1-sqrt(1-16*x))).
G.f.: 2F1( (1/4, 3/4); (3/2))(16*x). - Olivier Gérard Feb 17 2011
D-finite with recurrence n*(2*n+1)*a(n) - 2*(4*n-1)*(4*n-3)*a(n-1) = 0. - R. J. Mathar, Nov 30 2012
E.g.f: 2F2(1/4, 3/4; 1, 3/2; 16*x). - Vladimir Reshetnikov, Apr 24 2013
G.f. A(x) satisfies: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ). - Paul D. Hanna, Nov 09 2013
G.f. A(x) satisfies: A(x) = sqrt(1 + 4*x*A(x)^4). - Paul D. Hanna, Nov 09 2013
a(n) = hypergeom([1-2*n,-2*n],[2],1). - Peter Luschny, Sep 22 2014
a(n) ~ 2^(4*n-3/2)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Oct 10 2016
From Peter Bala, Feb 27 2020: (Start)
a(n) = (4^n)*binomial(2*n + 1/2, n)/(4*n + 1).
O.g.f.: A(x) = sqrt(c(4*x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers. Cf. A228411. (End)
Sum_{n>=0} 1/a(n) = A276483. - Amiram Eldar, Nov 18 2020
Sum_{n>=0} a(n)/4^n = sqrt(2). - Amiram Eldar, Mar 16 2022
From Peter Bala, Feb 22 2023: (Start)
a(n) = (1/2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (i + j + 2)/(i + j - 1) for n >= 1.
a(n) = Product_{1 <= i <= j <= 2*n-1} (3*i + j + 2)/(3*i + j - 1). Cf. A024492. (End)
a(n) = Sum_{k = 0..2*n-1} (-1)^k * 4^(2*n-k-1)*binomial(2*n-1, k)*Catalan(k+1). - Peter Bala, Apr 29 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^6). - Seiichi Manyama, Jun 20 2025

A024492 Catalan numbers with odd index: a(n) = binomial(4*n+2, 2*n+1)/(2*n+2).

Original entry on oeis.org

1, 5, 42, 429, 4862, 58786, 742900, 9694845, 129644790, 1767263190, 24466267020, 343059613650, 4861946401452, 69533550916004, 1002242216651368, 14544636039226909, 212336130412243110, 3116285494907301262, 45950804324621742364, 680425371729975800390
Offset: 0

Views

Author

Keywords

Comments

a(n) and Catalan(n) have the same 2-adic valuation (equal to 1 less than the sum of the digits in the binary representation of (n + 1)). In particular, a(n) is odd iff n is of the form 2^m - 1. - Peter Bala, Aug 02 2016

Examples

			sqrt((1/2)*(1+sqrt(1-x))) = 1 - (1/8)*x - (5/128)*x^2 - (42/2048)*x^3 - ...
		

Crossrefs

Cf. A048990 (Catalan numbers with even index), A024491, A000108, A000894.

Programs

  • Magma
    [Factorial(4*n+2)/(Factorial(2*n+1)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Sep 13 2011
    
  • Maple
    with(combstruct):bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,unlabeled],size=2*n), n=1..18); # Zerinvary Lajos, Dec 05 2007
    a := n -> binomial(4*n+1, 2*n+1)/(n+1):
    seq(a(n), n=0..17); # Peter Luschny, May 30 2021
  • Mathematica
    CoefficientList[ Series[1 + (HypergeometricPFQ[{3/4, 1, 5/4}, {3/2, 2}, 16 x] - 1), {x, 0, 17}], x]
    CatalanNumber[Range[1,41,2]] (* Harvey P. Dale, Jul 25 2011 *)
  • Maxima
    a(n):=sum((k+1)^2*binomial(2*(n+1),n-k)^2,k,0,n)/(n+1)^2; /* Vladimir Kruchinin, Oct 14 2014 */
  • MuPAD
    combinat::catalan(2*n+1)$ n = 0..24 // Zerinvary Lajos, Jul 02 2008
    
  • MuPAD
    combinat::dyckWords::count(2*n+1)$ n = 0..24 // Zerinvary Lajos, Jul 02 2008
    
  • PARI
    a(n)=binomial(4*n+2,2*n+1)/(2*n+2) \\ Charles R Greathouse IV, Sep 13 2011
    

Formula

G.f.: (1/2)*x^(-1)*(1-sqrt((1/2)*(1+sqrt(1-16*x)))).
G.f.: 3F2([3/4, 1, 5/4], [3/2, 2], 16*x). - Olivier Gérard, Feb 16 2011
a(n) = 4^n*binomial(2n+1/2, n)/(n+1). - Paul Barry, May 10 2005
a(n) = binomial(4n+1,2n+1)/(n+1). - Paul Barry, Nov 09 2006
a(n) = (1/(2*Pi))*Integral_{x=-2..2} (2+x)^(2*n)*sqrt((2-x)*(2+x)). - Peter Luschny, Sep 12 2011
D-finite with recurrence (n+1)*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
G.f.: (c(sqrt(x)) - c(-sqrt(x)))/(2*sqrt(x)) = (2-(sqrt(1-4*sqrt(x)) + sqrt(1+4*sqrt(x))))/(4*x), with the g.f. c(x) of the Catalan numbers A000108. - Wolfdieter Lang, Feb 23 2014
a(n) = Sum_{k=0..n} (k+1)^2*binomial(2*(n+1),n-k)^2 /(n+1)^2. - Vladimir Kruchinin, Oct 14 2014
G.f.: A(x) = (1/x)*(inverse series of x - 5*x^2 + 8*x^3 - 4*x^4). - Vladimir Kruchinin, Oct 31 2014
a(n) ~ sqrt(2)*16^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Aug 02 2016
Sum_{n>=0} 1/a(n) = A276484. - Amiram Eldar, Nov 18 2020
G.f.: A(x) = C(4*x)*C(x*C(4*x)), where C(x) is the g.f. of A000108. - Alexander Burstein, May 01 2021
a(n) = (1/Pi)*16^(n+1)*Integral_{x=0..Pi/2} (cos x)^(4n+2)*(sin x)^2. - Greg Dresden, May 30 2021
Sum_{n>=0} a(n)/4^n = 2 - sqrt(2). - Amiram Eldar, Mar 16 2022
From Peter Bala, Feb 22 2023: (Start)
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (i + j + 2)/(i + j - 1).
a(n) = Product_{1 <= i <= j <= 2*n} (3*i + j + 2)/(3*i + j - 1). Cf. A000260. (End)

Extensions

More terms from Wolfdieter Lang

A187357 Catalan trisection: A000108(3*n), n >= 0.

Original entry on oeis.org

1, 5, 132, 4862, 208012, 9694845, 477638700, 24466267020, 1289904147324, 69533550916004, 3814986502092304, 212336130412243110, 11959798385860453492, 680425371729975800390, 39044429911904443959240, 2257117854077248073253720, 131327898242169365477991900, 7684785670514316385230816156, 451959718027953471447609509424
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

Trisection of a sequence, given by its real o.g.f. G(x), is accomplished by
G(x) = G0(x^3) + x*G1(x^3) + (x^2)*G2(x^3), with the following solutions (using r := exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2):
G0(x) = (G(x^(1/3) + (G(r*x^(1/3)) + c.c.))/3,
G1(x) = (G(x^(1/3)) + ((1/r)*G(r*x^(1/3)) + c.c.))/(3*x^(1/3)),
G2(x) = (G(x^(1/3)) + (r*G(r*x^(1/3)) + c.c.))/(3*x^(2/3)),
where c.c. denotes the complex conjugate of the preceding expression.
See also the J. Arndt link, sect. 36.1.4,p.688: "Multisection by selecting terms with exponents s mod M", with M=3, where the o.g.f.s for the M-sected sequences with interspersed zeros are given for the general case.

Crossrefs

Cf. A000108, A024492, A048990, A187358 (C(3*n+1)), A187359 (C(3*n+2)/2), A208745.

Programs

  • Mathematica
    Table[CatalanNumber[3*n], {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)

Formula

a(n) = C(3*n), n >= 0, with C(n):= A000108(n) (Catalan).
O.g.f.: G0(x) = (sqrt(2*sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) - (1 - 4*x^(1/3))) - sqrt(1 - 4*x^(1/3)))/(6*x^(1/3)).
From Ilya Gutkovskiy, Jan 13 2017: (Start)
E.g.f.: 3F3(1/6,1/2,5/6; 2/3,1,4/3; 64*x).
a(n) ~ 64^n/(3*sqrt(3*Pi)*n^(3/2)). (End)
D-finite with recurrence n*(3*n-1)*(3*n+1)*a(n) -8*(6*n-5)*(6*n-1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} a(n)/4^n = (4/3)^(3/4) (A208745). - Amiram Eldar, Mar 16 2022
a(n) = Product_{1 <= i <= j <= 3*n-1} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023

A187358 Catalan trisection: A000108(3*n+1), n>=0.

Original entry on oeis.org

1, 14, 429, 16796, 742900, 35357670, 1767263190, 91482563640, 4861946401452, 263747951750360, 14544636039226909, 812944042149730764, 45950804324621742364, 2622127042276492108820, 150853479205085351660700, 8740328711533173390046320, 509552245179617138054608572, 29869166945772625950142417512
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

See the comment under A187357 for the o.g.f.s for the general trisection of a sequence.

Crossrefs

Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187359 (C(3*n+2)).

Programs

  • Mathematica
    Table[CatalanNumber[3*n+1], {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)

Formula

a(n) = C(3*n+1), n>=0, with C(n) = A000108(n) (Catalan).
O.g.f.: (sqrt(2*sqrt(1+4*x^(1/3)+16*x^(2/3))-(1+8*x^(1/3))) - sqrt(1-4*x^(1/3)))/(6*x^(2/3)).
From Ilya Gutkovskiy, Jan 13 2017: (Start)
E.g.f.: 3F3(1/2,5/6,7/6; 1,4/3,5/3; 64*x).
a(n) ~ 4^(3*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
Sum_{n>=0} a(n)/4^n = 2*sqrt(2*sqrt(3) - 3)/3. - Amiram Eldar, Mar 16 2022
a(n) = Product_{1 <= i <= j <= 3*n} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023
Showing 1-4 of 4 results.