A008472 Sum of the distinct primes dividing n.
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
Offset: 1
Examples
a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5. a(19) = 19 because 19 is prime. a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from Franklin T. Adams-Watters)
- Johann Bartel, R. K. Bhaduri, Matthias Brack, and M. V. N. Murthy, On the asymptotic prime partitions of integers, arXiv:1609.06497 [math-ph], 2017.
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_Wilf A. Wilson_, Jul 21 2017]
Crossrefs
Programs
-
Haskell
a008472 = sum . a027748_row -- Reinhard Zumkeller, Mar 29 2012
-
Magma
[n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
-
Maple
A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))): seq(A008472(i), i = 1..40); # Peter Luschny, Jan 31 2012 A008472 := proc(n) add( d, d= numtheory[factorset](n)) ; end proc: # R. J. Mathar, Jul 08 2012
-
Mathematica
Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0] Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *) (* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *) Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
-
PARI
sopf(n) = local(fac=factor(n)); sum(i=1,matsize(fac)[1],fac[i,1])
-
PARI
vector(100,n,vecsum(factor(n)[,1]~)) \\ Derek Orr, May 13 2015
-
PARI
A008472(n)=vecsum(factor(n)[,1]) \\ M. F. Hasler, Jul 18 2015
-
Python
from sympy import primefactors def A008472(n): return sum(primefactors(n)) # Chai Wah Wu, Feb 03 2022
-
Sage
def A008472(n): return add(d for d in divisors(n) if is_prime(d)) print([A008472(i) for i in (1..40)]) # Peter Luschny, Jan 31 2012
-
Sage
[sum(prime_factors(n)) for n in range(1,74)] # Giuseppe Coppoletta, Jan 19 2015
Formula
Let n = Product_j prime(j)^k(j) where k(j) >= 1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
G.f.: Sum_{k >= 1} prime(k)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Dirichlet g.f.: primezeta(s-1)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p. - Wesley Ivan Hurt, Feb 04 2022
From Bernard Schott, Feb 07 2022: (Start)
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
a(n) = Sum_{d|n} d * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Comments