cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034693 Smallest k such that k*n+1 is prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 10, 2, 2, 1, 2, 3, 4, 2, 4, 1, 2, 1, 10, 3, 2, 3, 2, 1, 4, 5, 2, 1, 2, 1, 4, 2, 4, 1, 6, 2, 4, 2, 2, 1, 2, 2, 6, 2, 4, 1, 12, 1, 6, 5, 2, 3, 2, 1, 4, 2, 2, 1, 8, 1, 4, 2, 2, 3, 6, 1, 4, 3, 2, 1, 2, 4, 12, 2, 4, 1, 2, 2, 6, 3, 4, 3, 2, 1, 4, 2
Offset: 1

Views

Author

Keywords

Comments

Conjecture: for every n > 1 there exists a number k < n such that n*k + 1 is a prime. - Amarnath Murthy, Apr 17 2001
A stronger conjecture: for every n there exists a number k < 1 + n^(.75) such that n*k + 1 is a prime. I have verified this up to n = 10^6. Also, the expression 1 + n^(.74) does not work as an upper bound (counterexample: n = 19). - Joseph L. Pe, Jul 16 2002
Stronger version of the conjecture verified up to 10^9. - Mauro Fiorentini, Jul 23 2023
It is known that, for almost all n, a(n) <= n^2. From Heath-Brown's result (1992) obtained with help of the GRH, it follows that a(n) <= (phi(n)*log(n))^2. - Vladimir Shevelev, Apr 30 2012
Conjecture: a(n) = O(log(n)*log(log(n))). - Thomas Ordowski, Oct 17 2014
I conjecture the opposite: a(n) / (log n log log n) is unbounded. See A194945 for records in this sequence. - Charles R Greathouse IV, Mar 21 2016

Examples

			If n=7, the smallest prime in the sequence 8, 15, 22, 29, ... is 29, so a(7)=4.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 2.12, pp. 127-130.
  • P. Ribenboim, (1989), The Book of Prime Number Records. Chapter 4, Section IV.B.: The Smallest Prime In Arithmetic Progressions, pp. 217-223.

Crossrefs

Cf. A010051, A034694, A053989, A071558, A085420, A103689, A194944 (records), A194945 (positions of records), A200996.

Programs

  • Haskell
    a034693 n = head [k | k <- [1..], a010051 (k * n + 1) == 1]
    -- Reinhard Zumkeller, Feb 14 2013
    
  • Maple
    A034693 := proc(n)
        for k from 1 do
            if isprime(k*n+1) then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 26 2015
  • Mathematica
    a[n_]:=(k=0; While[!PrimeQ[++k*n + 1]]; k); Table[a[n], {n,100}] (* Jean-François Alcover, Jul 19 2011 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(isprime(s*n+1)==0,s++); s)
    
  • Python
    from sympy import isprime
    def a(n):
        k = 1
        while not isprime(k*n+1): k += 1
        return k
    print([a(n) for n in range(1, 99)]) # Michael S. Branicky, May 05 2022

Formula

It seems that Sum_{k=1..n} a(k) is asymptotic to (zeta(2)-1)*n*log(n) where zeta(2)-1 = Pi^2/6-1 = 0.6449... . - Benoit Cloitre, Aug 11 2002
a(n) = (A034694(n)-1) / n. - Joerg Arndt, Oct 18 2020

A053989 Smallest k such that nk-1 is prime.

Original entry on oeis.org

3, 2, 1, 1, 4, 1, 2, 1, 2, 2, 4, 1, 8, 1, 2, 2, 4, 1, 2, 1, 2, 2, 6, 1, 6, 4, 2, 3, 6, 1, 2, 1, 4, 2, 4, 2, 2, 1, 6, 2, 4, 1, 6, 1, 2, 3, 6, 1, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 6, 1, 8, 1, 4, 2, 6, 2, 6, 1, 2, 2, 4, 1, 14, 1, 2, 2, 4, 3, 2, 1, 8, 2, 4, 1, 6, 3, 2, 3, 16, 1, 2, 4, 6, 3, 4, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Henry Bottomley, Apr 04 2000

Keywords

Examples

			a(5)=4 because the smallest prime in the sequence 5k-1 (4,9,14,19,24...) is 19 when k=4
		

Crossrefs

Programs

Formula

a(n) = (A038700(n)+1)/n.

A071558 Smallest k such that n*k + 1 and n*k - 1 are twin primes.

Original entry on oeis.org

4, 2, 2, 1, 6, 1, 6, 9, 2, 3, 18, 1, 24, 3, 2, 12, 6, 1, 12, 3, 2, 9, 6, 3, 6, 12, 4, 15, 12, 1, 42, 6, 6, 3, 12, 2, 54, 6, 8, 6, 30, 1, 24, 15, 4, 3, 6, 4, 18, 3, 2, 6, 120, 2, 12, 48, 4, 6, 18, 1, 258, 21, 14, 3, 30, 3, 24, 15, 2, 6, 18, 1, 84, 27, 2, 3, 6, 4, 132, 3, 10, 15, 54, 5, 12, 12
Offset: 1

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Comments

Conjecture: a(n) < sqrt(n)*log(n) for all n > 17261. This has been verified for n up to 3*10^7. It implies the inequality a(n) < n for each n > 127. - Zhi-Wei Sun, Jan 07 2013
A200996(n) <= a(n). - Reinhard Zumkeller, Feb 14 2013

Crossrefs

Cf. A071407 (k at prime n).
Cf. A220143, A220144 (record values).

Programs

  • Haskell
    a071558 n = head [k | k <- [1..], let x = k * n,
                          a010051' (x - 1) == 1, a010051' (x + 1) == 1]
    -- Reinhard Zumkeller, Feb 14 2013
  • Mathematica
    Table[k=1; While[!And@@PrimeQ[n*k+{1,-1}],k++]; k,{n,86}] (* Jayanta Basu, May 26 2013 *)
  • PARI
    a(n) = my(s=1); while(isprime(s*n+1)*isprime(n*s-1)==0, s++); s;
    

A103689 a(n) is the least k such that either k*n - 1 or k*n + 1 (or both) is prime.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 6, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 1, 2, 1, 2, 1, 6, 2, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 6, 1, 6, 1, 2
Offset: 1

Views

Author

Pierre CAMI, Feb 12 2005

Keywords

Crossrefs

Programs

  • Haskell
    a103689 n = min (a053989 n) (a034693 n)
    -- Reinhard Zumkeller, Feb 14 2013
    
  • Mathematica
    f[n_] := Block[{k = 1}, While[ ! PrimeQ[k*n - 1] && ! PrimeQ[k*n + 1], k++ ]; k]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Feb 12 2005 *)
    lk[n_]:=Module[{k=1},While[NoneTrue[k*n+{1,-1},PrimeQ],k++];k]; Array[ lk,120] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 01 2016 *)
  • PARI
    a(n) = my(k=1); while (!isprime(k*n+1) && !isprime(k*n-1), k++); k; \\ Michel Marcus, Oct 18 2021

Formula

a(n) <= A200996(n). - Reinhard Zumkeller, Feb 14 2013
a(n) = min {A053989(n), A034693(n)}. - Reinhard Zumkeller, Feb 14 2013
a(A002110(n)/3+3) >= ceiling((prime(n+1)-1)/3) for n >= 2. Equality holds for n = 2, 4, 6, 8, 10, 12, 22, 25, 31, 116, 155, 156, 197, ... . - Pontus von Brömssen, Oct 16 2021
a(A002110(n)/3-3) >= ceiling((prime(n+1)-1)/3) for n >= 3. Equality holds for n = 3, 4, 5, 6, 7, 9, 39, 51, 59, 65, 98, 311, ... . - Pontus von Brömssen, Oct 19 2021

Extensions

Edited, corrected and extended by Robert G. Wilson v, Feb 19 2005
Showing 1-4 of 4 results.