A351020
Maximal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.
Original entry on oeis.org
1, 1, 5, 64, 1650, 66731, 3968777, 323676148, 34890266414, 4780256317586, 814873637329516, 168491370685328792
Offset: 0
a(3) = 64:
2 3 1
3 2 3
1 3 2
a(4) = 1650:
3 4 2 1
4 3 4 2
2 4 3 4
1 2 4 3
a(5) = 66731:
3 5 4 2 1
5 3 5 4 2
4 5 3 5 4
2 4 5 3 5
1 2 4 5 3
-
from itertools import permutations
from sympy import Matrix
def A351020(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 31 2022
A351019
Minimal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.
Original entry on oeis.org
1, 1, 5, 36, 480, 9991, 296913, 12099604, 637590728, 43090005714, 3550491371994, 359557627057876
Offset: 0
a(3) = 36:
2 1 3
1 2 1
3 1 2
a(4) = 480:
2 1 3 4
1 2 1 3
3 1 2 1
4 3 1 2
a(5) = 9991:
3 1 2 4 5
1 3 1 2 4
2 1 3 1 2
4 2 1 3 1
5 4 2 1 3
-
from itertools import permutations
from sympy import Matrix
def A351019(n): return 1 if n == 0 else min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 31 2022
A356481
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of 1, 2, ..., 2*n.
Original entry on oeis.org
1, 2, 21, 532, 24845, 1856094, 203076097, 30633787976, 6097546660185, 1548899852221210, 489114616743840461
Offset: 0
a(2) = 21 because the hafnian of
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1
equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 21.
Cf.
A001792 (absolute value of the determinant of M(n)),
A204235 (permanent of M(n)).
-
k[i_]:=i; M[i_, j_, n_]:=Part[Part[ToeplitzMatrix[Array[k, n]], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
tm(n) = my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, i)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
A307783
The permanent of an n X n symmetric Toeplitz matrix M(n) whose first row consists of n, n-1, ..., 1.
Original entry on oeis.org
1, 5, 62, 1472, 57228, 3300052, 264163120, 28004426240, 3796084024832, 640290996560896, 131495036625989504, 32300689159458652160, 9350873610168606862080, 3150550820854335942423808, 1222211647879605626853439488, 540858935979668390014623285248, 270804098518125729769134021574656
Offset: 1
For n = 1 the matrix M(1) is
1
with permanent a(1) = 1.
For n = 2 the matrix M(2) is
2, 1
1, 2
with permanent a(2) = 5.
For n = 3 the matrix M(3) is
3, 2, 1
2, 3, 2
1, 2, 3
with permanent a(3) = 62.
-
f:= proc(n) uses LinearAlgebra; Permanent(ToeplitzMatrix([i, i=n..1, -1)])) end proc: map(f, [$1..17]);
-
b[i_]:=i; a[n_]:=Permanent[ToeplitzMatrix[Reverse[Array[b, n]], Reverse[Array[b, n ]]]]; Array[a, 17]
-
{a(n) = matpermanent(matrix(n, n, i, j, n + 1 - max(i - j + 1, j - i + 1)))}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Apr 29 2019
A323254
The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 2*n - 1, n - 1, ..., 1 and whose first column consists of 2*n - 1, 2*n - 2, ..., n.
Original entry on oeis.org
1, 7, 58, 614, 8032, 125757, 2298208, 48075148, 1133554432, 29756555315, 860884417024, 27218972906226, 933850899349504, 34556209025624041, 1371957513591119872, 58174957356247084568, 2624017129323317493760, 125454378698728779884895, 6337442836338834419089408
Offset: 1
For n = 1 the matrix M(1) is
1
with determinant Det(M(1)) = 1.
For n = 2 the matrix M(2) is
3, 1
2, 3
with Det(M(2)) = 7.
For n = 3 the matrix M(3) is
5, 2, 1
4, 5, 2
3, 4, 5
with Det(M(3)) = 58.
Cf.
A323255 (permanent of matrix M(n)).
-
b[i_]:=i; a[n_]:=Det[ToeplitzMatrix[Join[{b[2*n-1]}, Array[b, n-1, {2*n-2,n}]], Join[{b[2*n-1]},Array[b, n-1, {n-1,1}]]]]; Array[a,20]
-
tm(n) = {my(m = matrix(n, n, i, j, if (j==1, 2*n-i, n-j+1))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;}
a(n) = matdet(tm(n)); \\ Stefano Spezia, Dec 11 2019
A359560
a(n) is the permanent of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, 5, 18, 360, 2800, 151424, 1926704, 218991568, 3961998320, 815094714320, 19339258670304, 6524060415099520, 192715406460607360, 99364368150722162944, 3525158026102570745600, 2635328330670632415828224, 109381927750670379873854720, 113797518402277434839782802688
Offset: 0
a(3) = 18:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
-
A359560 := proc(n)
local T,c,r ;
if n =0 then
return 1 ;
end if;
T := Matrix(n,n,shape=hermitian) ;
T[1,1] := 1 ;
for c from 2 to n do
T[1,c] := c*I ;
end do:
for r from 2 to n do
for c from r to n do
T[r,c] := T[r-1,c-1] ;
end do:
end do:
LinearAlgebra[Permanent](T) ;
simplify(%) ;
end proc:
seq(A359560(n),n=0..15) ; # R. J. Mathar, Jan 31 2023
-
Join[{1},Table[Permanent[ToeplitzMatrix[Join[{1},I Range[2,n]]]],{n,18}]]
-
a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 1, if (iMichel Marcus, Jan 20 2023
-
from sympy import Matrix, I
def A359560(n): return Matrix(n,n,[i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] if n else 1 # Chai Wah Wu, Jan 25 2023
A204436
Permanent of the n-th principal submatrix of A204435.
Original entry on oeis.org
1, 1, 1, 2, 6, 16, 80, 384, 1728, 12096, 82080, 525312, 4783104, 41886720, 349056000, 3891456000, 41803776000, 429981696000, 5667397632000, 72153317376000, 883878137856000, 13437405757440000, 197840194965504000, 2813727217287168000, 48450827875516416000
Offset: 0
-
f[i_, j_] := Mod[(i + j)^2, 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204435 *)
Join[{1},Table[Permanent[m[n]], {n, 1, 22}]] (* A204436 *)
A323255
The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 2*n - 1, n - 1, ..., 1 and whose first column consists of 2*n - 1, 2*n - 2, ..., n.
Original entry on oeis.org
1, 1, 11, 248, 9968, 638772, 60061657, 7798036000, 1336715859150, 292406145227392, 79483340339739367, 26280500564448081664, 10386012861097225139356, 4834639222955142417477888, 2618110215141486526589786501, 1631888040186649673361825042432, 1159983453675106278249250918734938
Offset: 0
For n = 1 the matrix M(1) is
1
with permanent a(1) = 1.
For n = 2 the matrix M(2) is
3, 1
2, 3
with permanent a(2) = 11.
For n = 3 the matrix M(3) is
5, 2, 1
4, 5, 2
3, 4, 5
with permanent a(3) = 248.
Cf.
A323254 (determinant of matrix M(n)).
-
b[i_]:=i; a[n_]:=If[n==0, 1, Permanent[ToeplitzMatrix[Join[{b[2*n-1]}, Array[b, n-1, {2*n-2,n }]], Join[{b[2*n-1]},Array[b, n-1, {n-1,1}]]]]]; Array[a, 16, 0]
-
tm(n) = {my(m = matrix(n, n, i, j, if (j==1, 2*n-i, n-j+1))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;}
a(n) = matpermanent(tm(n)); \\ Stefano Spezia, Dec 11 2019
Showing 1-8 of 8 results.
Comments