cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A066218 Numbers k such that sigma(k) = Sum_{j|k, j

Original entry on oeis.org

198, 608, 11322, 20826, 56608, 3055150, 565344850, 579667086, 907521650, 8582999958, 13876688358, 19244570848, 195485816050, 255701999358, 1038635009650, 1410759512050, 3308222326688, 6293446033554, 12859914783762, 15343909268584, 18359652610976, 19142664182226, 41584649258178, 45090324794034, 56293124233554
Offset: 1

Views

Author

Joseph L. Pe, Dec 17 2001

Keywords

Comments

I propose this generalization of perfect numbers: for an arithmetical function f, the "f-perfect numbers" are the n such that f(n) = sum of f(k) where k ranges over proper divisors of n. The usual perfect numbers are i-perfect numbers, where i is the identity function. This sequence lists the sigma-perfect numbers. It is not hard to see that the EulerPhi-perfect numbers are the powers of 2 and the d-perfect numbers are the squares of primes (d(n) denotes the number of divisors of n).
Problems: Find an expression generating sigma-perfect numbers. Are there infinitely many of these? Find other interesting sets generated by other f's. 3.
a(17) > 2*10^12. - Giovanni Resta, Jun 20 2013
Numbers k such that A296075(k) = 0. - Amiram Eldar, Apr 16 2024
No more terms < 10^14. - Jud McCranie, Nov 28 2024

Examples

			Proper divisors of 198 = {1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99}; sum of their sigma values = 1 + 3 + 4 + 12 + 13 + 12 + 39 + 36 + 48 + 144 + 156 = 468 = sigma(198).
		

Crossrefs

Programs

  • Mathematica
    f[ x_ ] := DivisorSigma[ 1, x ]; Select[ Range[ 1, 10^5 ], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
  • PARI
    is(n)=sumdiv(n,d,sigma(d))==2*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014

Formula

Integer n = p1^k1 * p2^k2 * ... * pm^km is in this sequence if and only if g(p1^k1)*g(p2^k2)*...*g(pm^km)=2, where g(p^k) = (p^(k+2)-(k+2)*p+k+1)/(p^(k+1)-1)/(p-1) for prime p and integer k>=1. - Max Alekseyev, Oct 23 2008

Extensions

More terms from Naohiro Nomoto, May 07 2002
a(7)-a(8) from Farideh Firoozbakht, Sep 18 2006
a(9)-a(13) from Donovan Johnson, Jun 25 2012
a(14)-a(16) from Giovanni Resta, Jun 20 2013
a(17)-a(25) from Jud McCranie, Nov 28 2024

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A211780 a(n) = Sum_{d|n, dA000005 is the number of divisors.

Original entry on oeis.org

0, 2, 2, 7, 2, 14, 2, 18, 9, 18, 2, 43, 2, 22, 20, 41, 2, 54, 2, 57, 24, 30, 2, 106, 13, 34, 31, 71, 2, 110, 2, 88, 32, 42, 28, 162, 2, 46, 36, 142, 2, 138, 2, 99, 81, 54, 2, 237, 17, 102, 44, 113, 2, 178, 36, 178, 48, 66, 2, 325, 2, 70, 99, 183, 40, 194, 2
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Comments

Numbers n such that n divides a(n) are given in A068978.

Examples

			For n = 12: Sum_{d|n, d<n} d * tau(n / d) = 1*6 + 2*4 + 3*3 + 4*2 + 6*2 = 43.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[0, n/d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 27 2012 *)
  • PARI
    A211780(n) = sumdiv(n, d, sigma(d))-n; \\ Antti Karttunen, Nov 13 2017
    
  • Python
    A211780=lambda n:sum(sigma(d) for d in divisors(n, generator=True))-n
    from sympy import divisor_sigma as sigma, divisors # M. F. Hasler, Jun 03 2024

Formula

a(n) = A007429(n) - n = A211779(n) + A000203(n) - n .
a(n) = (Sum_{d|n} A000203(d)) - n. - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^4/36 - 1 = 1.705808... . - Amiram Eldar, Jun 06 2024

Extensions

Name edited by M. F. Hasler, Jun 03 2024

A318445 a(n) = Sum_{d|n, dA005187(d).

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 11, 5, 12, 1, 25, 1, 15, 13, 26, 1, 34, 1, 37, 16, 23, 1, 62, 9, 27, 21, 47, 1, 70, 1, 57, 24, 36, 20, 97, 1, 39, 28, 90, 1, 93, 1, 71, 55, 46, 1, 139, 12, 77, 37, 83, 1, 118, 28, 115, 40, 58, 1, 193, 1, 61, 71, 120, 32, 142, 1, 109, 47, 133, 1, 228, 1, 75, 86, 119, 31, 164, 1, 199, 71, 83, 1, 256, 41
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A318445(n) = sumdiv(n,d,(dA005187(d));

Formula

a(n) = Sum_{d|n, dA005187(d).
a(n) = A318446(n) - A005187(n).
a(n) = A211779(n) + A318447(n).
a(n) = A293447(A293214(n)).

A318447 a(n) = Sum_{d|n, dA294898(d), where A294898(d) = A005187(d) - sigma(d).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 3, 2, 0, 0, 1, 0, 2, 3, 7, 0, -8, 2, 9, 3, 4, 0, 2, 0, 0, 7, 14, 5, -10, 0, 15, 9, -2, 0, 9, 0, 12, 7, 18, 0, -22, 3, 18, 14, 16, 0, 6, 9, 1, 15, 24, 0, -24, 0, 25, 13, 0, 11, 26, 0, 26, 18, 25, 0, -45, 0, 33, 20, 28, 10, 32, 0, -14, 13, 37, 0, -15, 16, 38, 24, 13, 0, -8, 12, 34, 25, 41, 17, -52, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA294898(d).
a(n) = A318448(n) - A294898(n).
a(n) = A318445(n) - A211779(n).
a(n) = A296074(n) - A292257(n).

A224488 Numbers m such that k*m = Sum_{j|m, j < m} sigma(j), where k >= 1 is an integer.

Original entry on oeis.org

4, 10, 42, 90, 2448, 4680, 27144, 117000, 154498509, 222970077, 11049088050, 63554826816
Offset: 1

Views

Author

Giovanni Resta, Apr 08 2013

Keywords

Comments

a(13) > 10^11.

Examples

			The divisors of 10 smaller than 10 are 1, 2 and 5. Since sigma(1) + sigma(2) + sigma(5) = 10, 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 120000], Mod[Total@DivisorSigma[1, Most@Divisors@#], #] == 0 &]
  • PARI
    isok(m) = sumdiv(m, d, if (d!=m, sigma(d))) % m == 0; \\ Michel Marcus, Jul 13 2021

Extensions

a(9)-a(12) and bound on a(13) from Donovan Johnson.
Showing 1-6 of 6 results.