cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A014085 Number of primes between n^2 and (n+1)^2.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
Offset: 0

Views

Author

Jon Wild, Jul 14 1997

Keywords

Comments

Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014

Examples

			a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
		

References

  • J. R. Goldman, The Queen of Mathematics, 1998, p. 82.

Crossrefs

First differences of A038107.
Counts of primes between consecutive higher powers: A060199, A061235, A062517.

Programs

  • Haskell
    a014085 n = sum $ map a010051 [n^2..(n+1)^2]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
    Differences[PrimePi[Range[0,90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
  • PARI
    a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import primepi
    def a(n): return primepi((n+1)**2) - primepi(n**2)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021

Formula

a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008
a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012
Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - Alain Rocchelli, Sep 20 2023
Up to n=10^6 there are no counterexamples to this conjecture. - Hugo Pfoertner, Dec 16 2024
Sorenson & Webster show that a(n) > 0 for all 0 < n < 7.05 * 10^13. - Charles R Greathouse IV, Jan 31 2025

A377436 Numbers k such that there is no perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 8 and 9 are 19 and 23, and the interval (20,21,22) contains no prime-powers, so 8 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A377467, A013597, A014210, A014234, A244508.
For squarefree instead of perfect-power we have A068360, see A061398, A377430, A377431.
For just squares (instead of all perfect-powers) we have A221056, primes A224363.
For prime-powers (instead of perfect-powers) we have A377286.
These are the positions of 0 in A377432.
For one instead of none we have A377434, for prime-powers A377287.
For two instead of none we have A377466, for prime-powers A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the nearest prime-power before prime(n)-1, difference A377289.
A080101 and A366833 count prime-powers between primes, see A377057, A053607, A304521.
A081676 gives the nearest perfect-power up to n.
A246655 lists the prime-powers not including 1, complement A361102.
A377468 gives the nearest perfect-power after n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1, Prime[#+1]-1],perpowQ]]==0&]

A224363 Primes p such that there are no squares between p and the prime following p.

Original entry on oeis.org

2, 5, 11, 17, 19, 29, 37, 41, 43, 53, 59, 67, 71, 73, 83, 89, 101, 103, 107, 109, 127, 131, 137, 149, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 331, 337, 347, 349, 353, 367, 373
Offset: 1

Views

Author

César Aguilera, Apr 04 2013

Keywords

Comments

Legendre's Conjecture states that there is a prime between n^2 and (n+1)^2 for every integer n > 0 and thus that between two adjacent primes there can be at most one square. As of April 2013, the conjecture is still unproved.
a(n) = A000040(A221056(n)). - Reinhard Zumkeller, Apr 15 2013

Examples

			5 is a term because there are no squares between the adjacent primes 5 and 7.
		

Crossrefs

Programs

  • Haskell
    a224363 = a000040 . a221056  -- Reinhard Zumkeller, Apr 15 2013
  • Mathematica
    Select[Prime[Range[60]], Floor[Sqrt[NextPrime[#]]] == Floor[Sqrt[#]] &] (* Giovanni Resta, Apr 10 2013 *)

Extensions

Corrected and edited by Giovanni Resta, Apr 10 2013

A061265 Number of squares between n-th prime and (n+1)st prime.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2001

Keywords

Comments

If n-th prime is a member of A053001 then a(n) is at least 1. If not, then a(n) = 0.
Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2 is equivalent to conjecturing that a(n) <= 1 for all n. - Vladeta Jovovic, May 01 2003
a(A038107(n)) = 1 for n > 1; a(A221056(n)) = 0. - Reinhard Zumkeller, Apr 15 2013

Examples

			a(3) = 0 as there is no square between 5, the third prime and 7, the fourth prime. a(4) = 1, as there is a square (9) between the 4th prime 7 and the 5th prime 11.
		

Crossrefs

Cf. A053001.
Cf. A038107.
Cf. A014085.

Programs

Formula

a(n) = floor(sqrt(prime(n+1))) - floor(sqrt(prime(n))). - Vladeta Jovovic, May 01 2003

Extensions

Extended by Patrick De Geest, Jun 05 2001
Offset changed from 0 to 1 by Harry J. Smith, Jul 20 2009

A224699 a(n) = smallest k such that there is no square between prime(k) and prime(k+n).

Original entry on oeis.org

1, 7, 12, 26, 49, 55, 106, 106, 163, 229, 229, 307, 343, 343, 394, 458, 655, 655, 655, 655, 758, 812, 1358, 1472, 1472, 1472, 1618, 1618, 1767, 2058, 2191, 2191, 2393, 2638, 2916, 3108, 3108, 3339, 3437, 3946, 4272, 4353, 4353, 5107, 5107, 5523, 5523, 5744
Offset: 1

Views

Author

Zak Seidov, Apr 16 2013

Keywords

Comments

The sequence is apparently infinite.

Examples

			a(2000) = 19907242 because p = prime(19907242) = 371756971, q = prime(19907242 + 2000) = 371795461,  and between p anq q there is no square: (19281^2 = 371756961) < p and (19282^2 = 371795524) > q.
		

Crossrefs

Cf. A221056.

Programs

  • Mathematica
    m1 = 1; s = {}; Do[Do[If[Ceiling[Sqrt[Prime[m]]]^2 > Prime[m + k], AppendTo[s,  m]; m1 = m; Break[]], {m, m1, 10^6}], {k, 60}]; s
Showing 1-5 of 5 results.