A061399 Number of nonsquarefree integers between primes prime(n) and prime(n+1).
0, 1, 0, 2, 1, 1, 1, 1, 4, 0, 2, 1, 0, 2, 4, 2, 1, 2, 1, 1, 2, 2, 2, 3, 3, 0, 1, 1, 1, 7, 1, 3, 0, 4, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 2, 1, 6, 2, 2, 2, 1, 3, 2, 0, 4, 6, 1, 1, 2, 4, 3, 5, 1, 3, 1, 4, 3, 3, 1, 3, 2, 1, 3, 3, 1, 4, 1, 1, 2, 2, 3, 2, 0, 1, 5, 3, 2, 3, 1, 3, 4, 1, 9, 1, 5, 2, 3, 0, 3
Offset: 1
Keywords
Examples
Between 113 and 127 the 7 numbers which are not squarefree are {116,117,120,121,124,125,126}, so a(30)=7. From _Gus Wiseman_, Dec 07 2024: (Start) The a(n) nonsquarefree numbers for n = 1..15: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---------------------------------------------------------- . 4 . 8 12 16 18 20 24 . 32 40 . 44 48 9 25 36 45 49 27 50 28 52 (End)
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
Crossrefs
Programs
-
Mathematica
Count[Range[#[[1]]+1,#[[2]]-1],?(!SquareFreeQ[#]&)]&/@Partition[Prime[Range[120]],2,1] (* _Harvey P. Dale, Mar 31 2024 *)
-
PARI
{ n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=!issquarefree(i)); write("b061399.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
-
PARI
a(n) = my(p=prime(n)); sum(k=p, nextprime(p+1), ! issquarefree(k)); \\ Michel Marcus, Dec 09 2024
-
Python
from sympy import mobius, prime def A061399(n): return sum(not mobius(m) for m in range(prime(n)+1,prime(n+1))) # Chai Wah Wu, Jul 20 2024
Comments