A226513
Array read by antidiagonals: T(n,k) = number of barred preferential arrangements of k things with n bars (k >=0, n >= 0).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 8, 13, 1, 4, 15, 44, 75, 1, 5, 24, 99, 308, 541, 1, 6, 35, 184, 807, 2612, 4683, 1, 7, 48, 305, 1704, 7803, 25988, 47293, 1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835, 1, 9, 80, 679, 5340, 37625, 227304, 1102419, 3816548, 7087261
Offset: 0
Array begins:
1 1 3 13 75 541 4683 47293 545835 ...
1 2 8 44 308 2612 25988 296564 3816548 ...
1 3 15 99 807 7803 87135 1102419 15575127 ...
1 4 24 184 1704 18424 227304 3147064 48278184 ...
1 5 35 305 3155 37625 507035 7608305 125687555 ...
1 6 48 468 5340 69516 1014348 16372908 289366860 ...
...
Triangle begins:
1,
1, 1,
1, 2, 3,
1, 3, 8, 13,
1, 4, 15, 44, 75,
1, 5, 24, 99, 308, 541,
1, 6, 35, 184, 807, 2612, 4683,
1, 7, 48, 305, 1704, 7803, 25988, 47293,
1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835
........
[_Vincenzo Librandi_, Jun 18 2013]
- Z.-R. Li, Computational formulae for generalized mth order Bell numbers and generalized mth order ordered Bell numbers (in Chinese), J. Shandong Univ. Nat. Sci. 42 (2007), 59-63.
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
- Toka Diagana and Hamadoun Maïga, Some new identities and congruences for Fubini numbers, J. Number Theory 173 (2017), 547-569.
- Takao Komatsu, Shifted Bernoulli numbers and shifted Fubini numbers, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263 (p. 255).
-
T:= (n, k)-> k!*coeff(series(1/(2-exp(x))^(n+1), x, k+1), x, k):
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Mar 26 2016
-
T[n_, k_] := Sum[StirlingS2[k, i]*i!*Binomial[n+i, i], {i, 0, k}]; Table[ T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2016 *)
A354122
Expansion of e.g.f. 1/(1 + log(1 - x))^3.
Original entry on oeis.org
1, 3, 15, 102, 870, 8892, 105708, 1431168, 21722136, 365105928, 6729341832, 134915992560, 2922576142320, 68013701197920, 1692075061072800, 44810389419079680, 1258472984174461440, 37357062009383877120, 1168635883239630120960, 38424619272539153157120
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^3))
-
a(n) = sum(k=0, n, (k+2)!*abs(stirling(n, k, 1)))/2;
Original entry on oeis.org
1, 4, 24, 184, 1704, 18424, 227304, 3147064, 48278184, 812387704, 14872295784, 294192418744, 6251984167464, 142032703137784, 3434617880825064, 88075274293319224, 2387099326339205544, 68177508876215724664, 2046501717592969431144, 64408432189100396344504
Offset: 0
-
m:=3; [&+[StirlingSecond(n,i)*Factorial(i)*Binomial(m+i,i): i in [0..n]]: n in [0..20]]; // Bruno Berselli, Jun 18 2013
-
Range[0, 20]! CoefficientList[Series[(2 - Exp@x)^-4, {x, 0, 20}], x]
A367471
Expansion of e.g.f. 1 / (3 - 2 * exp(x))^3.
Original entry on oeis.org
1, 6, 54, 630, 8982, 150966, 2918934, 63772470, 1552910742, 41690570166, 1223096629014, 38924237638710, 1335418262833302, 49129420920630966, 1929262811804022294, 80540656071983191350, 3561781875173605408662, 166331104582900651581366
Offset: 0
-
a(n) = sum(k=0, n, 2^k*(k+2)!*stirling(n, k, 2))/2;
Original entry on oeis.org
1, 5, 35, 305, 3155, 37625, 507035, 7608305, 125687555, 2265230825, 44210200235, 928594230305, 20880079975955, 500343586672025, 12726718227077435, 342425052939060305, 9715738272696568355, 289901469137229041225, 9074304882434034258635, 297297854264669632338305
Offset: 0
-
m:=4; [&+[StirlingSecond(n, i)*Factorial(i)*Binomial(m+i, i): i in [0..n]]: n in [0..20]];
-
Range[0,20]! CoefficientList[Series[(2 - Exp@x)^-5, {x, 0, 20}],x]
Original entry on oeis.org
1, 6, 48, 468, 5340, 69516, 1014348, 16372908, 289366860, 5553635436, 114964523148, 2552305112748, 60474398655180, 1522843616043756, 40605864407444748, 1142786353739186988, 33848016050071188300, 1052381222812017946476, 34266937867683980363148, 1166071764343727862515628
Offset: 0
-
m:=5; [&+[StirlingSecond(n, i)*Factorial(i)*Binomial(m+i, i): i in [0..n]]: n in [0..20]];
-
Range[0, 20]! CoefficientList[Series[(2 - Exp@x)^-6, {x, 0, 20}], x]
A354120
Expansion of e.g.f. 1/(1 - log(1 + x))^3.
Original entry on oeis.org
1, 3, 9, 30, 114, 492, 2388, 12912, 77016, 503112, 3570552, 27399600, 225729360, 1991996640, 18690559200, 186620451840, 1963991600640, 21914748541440, 255336518292480, 3155705206364160, 40209018105116160, 547746803311864320, 7525926332189130240
Offset: 0
-
Table[Sum[(k+2)! * StirlingS1[n,k], {k,0,n}]/2, {n,0,35}] (* Vaclav Kotesovec, Jun 04 2022 *)
With[{nn=30},CoefficientList[Series[1/(1-Log[1+x])^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 16 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x))^3))
-
a(n) = sum(k=0, n, (k+2)!*stirling(n, k, 1))/2;
A305919
a(n) = n! * [x^n] 1/(2 - exp(x))^n.
Original entry on oeis.org
1, 1, 8, 99, 1704, 37625, 1014348, 32300359, 1186399952, 49376357109, 2296400723220, 118031059900523, 6643848377509368, 406471060412884753, 26856124898028246044, 1905791887135240982415, 144563460111417997403040, 11673024609379676114380877, 999663240630210837032231460
Offset: 0
-
Table[n! SeriesCoefficient[1/(2 - Exp[x])^n, {x, 0, n}], {n, 0, 18}]
Table[SeriesCoefficient[Sum[Binomial[n + k - 1, k] k! x^k/Product[1 - j x, {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Table[Sum[StirlingS2[n, k] Binomial[n + k - 1, k] k!, {k, 0, n}], {n, 0, 18}]
A367473
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^3.
Original entry on oeis.org
1, 9, 117, 1953, 39645, 946089, 25926597, 801869553, 27618402285, 1048096422009, 43444114011477, 1952712851250753, 94592798546953725, 4912513525545837129, 272265236648295312357, 16039329591716508497553, 1000809252891040145821965
Offset: 0
-
a(n) = sum(k=0, n, 3^k*(k+2)!*stirling(n, k, 2))/2;
A375661
Expansion of e.g.f. 1 / (1 - x * (exp(x) - 1))^3.
Original entry on oeis.org
1, 0, 6, 9, 156, 735, 9738, 83181, 1129656, 13662459, 207281190, 3151269033, 54457383060, 980680471095, 19240001086530, 397345461622245, 8763618490102128, 203472380293912563, 4991552271140255838, 128517790560854181537, 3472936316648987980620
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*(exp(x)-1))^3))
-
a(n) = n!*sum(k=0, n\2, (k+2)!*stirling(n-k, k, 2)/(n-k)!)/2;
Showing 1-10 of 13 results.
Comments