A163626
Triangle read by rows: The n-th derivative of the logistic function written in terms of y, where y = 1/(1 + exp(-x)).
Original entry on oeis.org
1, 1, -1, 1, -3, 2, 1, -7, 12, -6, 1, -15, 50, -60, 24, 1, -31, 180, -390, 360, -120, 1, -63, 602, -2100, 3360, -2520, 720, 1, -127, 1932, -10206, 25200, -31920, 20160, -5040, 1, -255, 6050, -46620, 166824, -317520, 332640, -181440, 40320, 1, -511, 18660
Offset: 0
y = 1/(1+exp(-x))
y^(0) = y
y^(1) = y-y^2
y^(2) = y-3*y^2+2*y^3
y^(3) = y-7*y^2+12*y^3-6*y^4
Triangle begins :
n\k 0 1 2 3 4 5 6
----------------------------------------
0: 1
1: 1 -1
2: 1 -3 2
3: 1 -7 12 -6
4: 1 -15 50 -60 24
5: 1 -31 180 -390 360 -120
6: 1 -63 602 -2100 3360 -2520 720
7: 1 -127 ... - Reformatted by _Philippe Deléham_, May 26 2015
Change of basis constants: x^4 = 1 - 15*binomial(x+1,1) + 50*binomial(x+2,2) - 60*binomial(x+3,3) + 24*binomial(x+4,4). - _Peter Bala_, Jun 06 2019
Columns k=0-10 give:
A000012,
A000225,
A028243,
A028244,
A028245,
A032180,
A228909,
A228910,
A228911,
A228912,
A228913.
-
A163626 := (n, k) -> add((-1)^j*binomial(k, j)*(j+1)^n, j = 0..k):
for n from 0 to 6 do seq(A163626(n, k), k = 0..n) od; # Peter Luschny, Sep 21 2017
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1-y[x]);
Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n-1][y][x], x];
row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest;
Table[row[n], {n, 0, 9}] // Flatten
(* or *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 9}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Dec 16 2014 *)
-
from sympy.core.cache import cacheit
@cacheit
def T(n, k):return 1 if n==0 and k==0 else 0 if k>n or k<0 else (k + 1)*T(n - 1, k) - k*T(n - 1, k - 1)
for n in range(51): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Sep 11 2017
A228912
a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 19958400, 618710400, 14270256000, 273158645760, 4595022432000, 70309810771200, 1000944296352000, 13467262000832640, 173201547619900800, 2147373231974006400, 25832386565857872000, 303056981918271947520, 3481253462769108364800
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
Tenth column of results of
A163626.
-
Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
-
a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1
A228913
a(n) = 11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 239500800, 8821612800, 239740300800, 5368729766400, 105006251750400, 1858166876966400, 30449278610150400, 469614684719980800, 6897777008118796800, 97349279409046828800, 1329165939158093836800, 17651395149921751680000
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..960
- Index entries for linear recurrences with constant coefficients, signature (66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800).
Eleventh column of results of
A163626.
-
Table[10!*StirlingS2[n+1, 11], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[-3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
LinearRecurrence[{66,-1925,32670,-357423,2637558,-13339535,45995730,-105258076,150917976,-120543840,39916800},{0,0,0,0,0,0,0,0,0,0,3628800},30] (* Harvey P. Dale, Mar 20 2017 *)
-
a(n)=11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1
A249163
Triangle read by rows: the positive terms of A163626.
Original entry on oeis.org
1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0
Cf.
A163626,
A000670,
A211374; also
A000012,
A000392,
A000481,
A000771,
A049447,
A028243,
A028246,
A091137,
A228909,
A163626,
A228911,
A228913 and Worpitzky numbers for the second Bernoulli numbers
A164555(n)/
A027642(n).
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
(* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)
A298668
Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0
T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3;
0, 1, 7, 2;
0, 1, 15, 12;
0, 1, 31, 50, 6;
0, 1, 63, 180, 60;
0, 1, 127, 602, 390, 24;
0, 1, 255, 1932, 2100, 360;
0, 1, 511, 6050, 10206, 3360, 120;
0, 1, 1023, 18660, 46620, 25200, 2520;
...
Columns k=0-11 give (offsets may differ):
A000007,
A057427,
A168604,
A028243,
A028244,
A028245,
A032180,
A228909,
A228910,
A228911,
A228912,
A228913.
Row sums give
A229046(n-1) for n>0.
-
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..14);
# second Maple program:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
# third Maple program:
T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
`if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
-
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)
A285867
Triangle T(n, k) read by rows: T(n, k) = S2(n, k)*k! + S2(n, k-1)*(k-1)! with the Stirling2 triangle S2 = A048993.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 7, 12, 0, 1, 15, 50, 60, 0, 1, 31, 180, 390, 360, 0, 1, 63, 602, 2100, 3360, 2520, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 0, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 0, 1, 1023, 57002, 874500, 5921520, 21538440, 46070640, 59875200, 46569600, 19958400
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 1
2: 0 1 3
3: 0 1 7 12
4: 0 1 15 50 60
5: 0 1 31 180 390 360
6: 0 1 63 602 2100 3360 2520
7: 0 1 127 1932 10206 25200 31920 20160
8: 0 1 255 6050 46620 166824 317520 332640 181440
9: 0 1 511 18660 204630 1020600 2739240 4233600 3780000 1814400
...
-
Table[If[k == 0, Boole[n == 0], StirlingS2[n, k] k! + StirlingS2[n, k - 1] (k - 1)!], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, May 08 2017 *)
Showing 1-6 of 6 results.
Comments