cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A249163 Triangle read by rows: the positive terms of A163626.

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0

Views

Author

Paul Curtz, Dec 15 2014

Keywords

Comments

We have two possibilities: with or without 0's.
Without 0's:
1,
1,
1, 2,
1, 12,
1, 50, 24,
1, 180, 360,
etc.
Sum of every row: A000670(n).
First two terms of successive columns: 1, 1, 2, 12, 24, 360, ... = A211374.
With 0's:
1, 0, 0, 0,
1, 0, 0, 0,
1, 2, 0, 0,
1, 12, 0, 0,
1, 50, 24, 0,
1, 180, 360, 0,
1, 602, 3360, 720,
etc.
The columns are essentially A000012, A028243, A028246, A228909, A228911, A228913, from Stirling numbers of the second kind S(n,3), S(n,5), S(n,7), S(n,9), S(n,11), ... .

Crossrefs

Cf. A163626, A000670, A211374; also A000012, A000392, A000481, A000771, A049447, A028243, A028246, A091137, A228909, A163626, A228911, A228913 and Worpitzky numbers for the second Bernoulli numbers A164555(n)/A027642(n).

Programs

  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
    (* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)

A245602 Triangle read by rows: the negative terms of A163626.

Original entry on oeis.org

-1, -3, -7, -6, -15, -60, -31, -390, -120, -63, -2100, -2520, -127, -10206, -31920, -5040, -255, -46620, -317520, -181440, -511, -204630, -2739240, -3780000, -362880, -1023, -874500, -21538440, -59875200, -19958400, -2047
Offset: 0

Views

Author

Paul Curtz, Dec 17 2014

Keywords

Comments

These numbers a(n) are the companion of A249163(n).
Consider the Worpitzky fractions A163626(n)/A002260(n) yielding the second Bernoulli numbers A164555(n)/A027642(n):
1,
1, -1/2,
1, -3/2, +2/3,
1, -7/2, +12/3, -6/4,
etc.
From the second row on, the sum of the numerators is 0.
The absolute values of every row of the numerators triangle A163626 are 1, 2, 6, 26, ... = A000629(n).
a(n) triangle is shifted. It starts from second row and second column of triangle above.
-1,
-3,
-7, -6,
-15, -60,
-31, -390, -120,
-63, -2100, -2520,
-127, -10206, -31920, -5040,
-255, -46620, -317520, -181440,
etc.
Sum of successive rows: -1, -3, -13, -75, ... = -A000670(n+1).
Successive columns: A000225, A028244, from the Stirling numbers of second kind S(n,2), S(n,4), S(n,6), S(n,8), S(n,10), ... . See A000770, A032180, A049434, A228910, A049435, A228912, A008277.

Crossrefs

Programs

  • Mathematica
    Select[ Table[ (-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten, Negative] (* Jean-François Alcover, Dec 26 2014 *)

A308326 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q = 2.

Original entry on oeis.org

1, 1, -1, 1, -4, 3, 1, -13, 33, -21, 1, -40, 270, -546, 315, 1, -121, 2010, -10080, 17955, -9765, 1, -364, 14433, -165270, 707805, -1171800, 615195, 1, -1093, 102123, -2580081, 24421005, -95765355, 151953165, -78129765, 1, -3280, 718140, -39416076, 795752370, -6790268520, 25331269320, -39221142030, 19923090075
Offset: 0

Views

Author

Werner Schulte, May 23 2019

Keywords

Comments

The formulas are given for the general case depending on some fixed integer q. The terms are valid if q = 2.
Special cases: T(0; n,k) = (-1)^k * binomial(n,k) for 0 <= k <= n and T(1; n,k) = A163626(n,k) for 0 <= k <= n.

Examples

			If q = 2 the triangle T(2; n,k) starts:
n\k:  0     1      2        3        4         5         6         7
====================================================================
  0:  1
  1:  1    -1
  2:  1    -4      3
  3:  1   -13     33      -21
  4:  1   -40    270     -546      315
  5:  1  -121   2010   -10080    17955     -9765
  6:  1  -364  14433  -165270   707805  -1171800    615195
  7:  1 -1093 102123 -2580081 24421005 -95765355 151953165 -78129765
etc.
		

Crossrefs

Programs

  • PARI
    q = 2; {T(n,k) = if(k<0 || k>n, 0, if(k==0, 1, if(q==1, (k+1) * T(n-1,k) - k * T(n-1,k-1), ((q^(k+1) - 1)/(q - 1)) * T(n-1,k) - ((q^k - 1)/(q - 1)) * T(n-1,k-1))))};
    for(n=0, 9, for(k=0, n, print1(T(n,k), ", "))) \\ Werner Schulte, May 26 2019

Formula

T(q; n,k) = [k+1]_q * T(q; n-1,k) - [k]_q * T(q; n-1,k-1) for 1 <= k <= n with initial values T(q; n,0) = 1 for n >= 0 and T(q; i,j) = 0 if i < j or j < 0 where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,k) = (1/q^binomial(k+1,2)) * (Sum_{j=0..k} (-1)^j * [k,j]_q * q^binomial(k-j,2) * ([j+1]_q)^n) for 0 <= k <= n and q not equal zero where [m,i]_q are the q-binomials (here A022166 for q = 2) and [i]_q = (q^i - 1)/(q - 1) for i >= 0.
Sum_{k=0..n} T(q; n,k) = A000007(n) for n >= 0.
T(q; n,k)/T(q; k,k) give the q-analogs of the Stirling numbers of the second kind (for q = 2 see A139382, but offset 1).
T(q; n,n) = (-1)^n * Product_{j=1..n} [j]_q for n>=0 with empty product 1 (case n = 0) where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,1) = -[n,1]_(q+1) for n >= 1 where [m,i]_q are the q-binomials (here A022166 for q = 2 and A022167 for q = 3).
G.f. of column k: col(q; t,k) = Sum_{n>=k} T(q; n,k)*t^n = ((-t)^k/(1-t)) * Product_{j=1..k} ([i]_q/(1-[i+1]_q*t)) for k>=0 with empty product 1 (case k=0) and [i]_q = i if q = 1 otherwise (q^i-1)/(q-1) for i>=0.

A329120 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q=3.

Original entry on oeis.org

1, 1, -1, 1, -5, 4, 1, -21, 72, -52, 1, -85, 1020, -3016, 2080, 1, -341, 13600, -133900, 372320, -251680, 1, -1365, 178164, -5532800, 50406720, -136662240, 91611520, 1, -5461, 2321592, -223628132, 6320525120, -55844268480, 149876446720, -100131391360
Offset: 0

Views

Author

Werner Schulte, Nov 05 2019

Keywords

Comments

For more information see A308326. There you'll find formulas for the general case depending on some fixed integer q.

Examples

			The triangle T(3; n,k) starts:
n\ k: 0     1      2        3        4          5        6
==========================================================
   0: 1
   1: 1    -1
   2: 1    -5      4
   3: 1   -21     72      -52
   4: 1   -85   1020    -3016     2080
   5: 1  -341  13600  -133900   372320    -251680
   6: 1 -1365 178164 -5532800 50406720 -136662240 91611520
etc.
		

Crossrefs

Programs

  • PARI
    { T(n,k) = if( k<0 || k>n, 0, if( k==0, 1, (3^(k+1) - 1)/2 * T(n-1,k) - (3^k - 1)/2 * T(n-1,k-1)))};
    for(n=0, 7, for(k=0, n, print1(T(n,k), ", ")))

A005649 Expansion of e.g.f. (2 - e^x)^(-2).

Original entry on oeis.org

1, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228, 1385244691781856307124
Offset: 0

Views

Author

Keywords

Comments

Exponential self-convolution of numbers of preferential arrangements.
Number of compatible bipartitional relations on a set of cardinality n. - Ralf Stephan, Apr 27 2003
Stirling transform of A000142, shifted left one place: 1, 2, 6, 24, 120, 720, ... - Philippe Deléham, May 17 2005; corrected by Ilya Gutkovskiy, Jul 25 2018
With an extra 1 at the beginning, coefficients of the formal (divergent) series expansion at infinity of Sum_{k>=0} 1/binomial(x,k) = 1+1/x+2/x^2+8/x^3+... Also Sum_{k>=0} k!/x^k Product_{i=1..k-1} 1/(1-i/x) yields a generating function in 1/x. - Roland Bacher, Nov 21 2000
Stirling-Bernoulli transform of A001057: 1, -1, 2, -2, 3, -3, 4, ... - Philippe Deléham, May 27 2015
a(n) is the total number of open sets summed over all chain topologies that can be placed on an n-set. A chain topology is a topology whose open sets can be totally ordered by inclusion. - Geoffrey Critzer, Apr 06 2017
From Gus Wiseman, Jun 10 2020: (Start)
Also the number of length n + 1 sequences covering an initial interval of positive integers with no adjacent equal parts (anti-runs). For example, the a(0) = 1 through a(2) = 8 anti-runs are:
(1) (1,2) (1,2,1)
(2,1) (1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
Also the number of ordered set partitions of {1,...,n + 1} with no two successive vertices in the same block. For example, the a(0) = 1 through a(2) = 8 ordered set partitions are:
{{1}} {{1},{2}} {{1,3},{2}}
{{2},{1}} {{2},{1,3}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
From Manfred Boergens, Feb 24 2025: (Start)
a(n+1) is the n-th row sum in A380977.
Number of surjections f with domain [n+1] and f(n+1)!=f(j) for j
Number of (n+1)-tuples containing all elements of a set, with a unique last element.
Consider an urn with balls of pairwise different colors. a(n) is the number of (n+1)-sequences of draws with replacement completing the covering of all colors with the last draw, the number of colors running from 1 to n+1.
(End)

Examples

			a(2)=8 gives the number of 3-tuples containing all elements of a set [n] with n<=3 and a unique last element: 112, 221, 123, 213, 132, 312, 231, 321. - _Manfred Boergens_, Feb 24 2025
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000670.
2*A083410(n)=a(n), if n>0.
Pairwise sums of A052841 and also of A089677.
Anti-run compositions are counted by A003242.
A triangle counting maximal anti-runs of compositions is A106356.
Anti-runs of standard compositions are counted by A333381.
Adjacent unequal pairs in standard compositions are counted by A333382.
Cf. A380977.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    f[n_] := Sum[(i + j)^n/2^(2 + i + j), {i, 0, Infinity}, {j, 0, Infinity}]; Array[f, 20, 0] (* Vladimir Reshetnikov, Dec 31 2008 *)
    a[n_] := (-1)^n (PolyLog[-n-1, 2] - PolyLog[-n, 2])/4; Array[f, 20, 0] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Range[0, 19]! CoefficientList[Series[(2 - Exp@ x)^-2, {x, 0, 19}], x] (* Robert G. Wilson v, Jan 23 2011 *)
    nn = 19; Range[0, nn]! CoefficientList[Series[1 + D[u^2 (Exp[z] - 1)/(1 - u (Exp[z] - 1)), u] /. u -> 1, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 06 2017 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],FreeQ[Differences[#],0]&]],{n,0,6}] (* Gus Wiseman, Jun 10 2020 *)
    With[{nn=20},CoefficientList[Series[1/(2-E^x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 02 2021 *)
    Table[Sum[(m+1)! StirlingS2[n,m],{m,0,n}],{n,0,19}] (* Manfred Boergens, Feb 24 2025 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(binomial(n,k)*t(k)*t(n-k),k,0,n),n,0,20);
    /* Emanuele Munarini, Oct 02 2012 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y)^2,y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    a(n)=polcoeff(sum(m=0, n,(2*m)!/m!*x^m/prod(k=1, m,1+(m+k)*x+x*O(x^n))), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 03 2013
    

Formula

E.g.f.: 1/(2-exp(x))^2.
a(n) = (A000670(n) + A000670(n+1)) / 2. - Philippe Deléham, May 16 2005
a(n) = D^n(1/(1-x)^2) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A052841. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2-exp(x))^2 = 1/(G(0) + 4), G(k) = 1-4/((2^k)-x*(4^k)/((2^k)*x-(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^n / Product_{k=1..n} (1 + (n+k)*x). - Paul D. Hanna, Jan 03 2013
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1/G(0) where G(k) = 1 - x*(k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) = Sum_{k = 0..n} A163626(n,k) * A001057(k+1). - Philippe Deléham, May 27 2015
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=0..n} Stirling2(n,k)*(k + 1)!. - Ilya Gutkovskiy, Jul 25 2018
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)

A028246 Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 12, 6, 1, 15, 50, 60, 24, 1, 31, 180, 390, 360, 120, 1, 63, 602, 2100, 3360, 2520, 720, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 1

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

Let M = n X n matrix with (i,j)-th entry a(n+1-j, n+1-i), e.g., if n = 3, M = [1 1 1; 3 1 0; 2 0 0]. Given a sequence s = [s(0)..s(n-1)], let b = [b(0)..b(n-1)] be its inverse binomial transform and let c = [c(0)..c(n-1)] = M^(-1)*transpose(b). Then s(k) = Sum_{i=0..n-1} b(i)*binomial(k,i) = Sum_{i=0..n-1} c(i)*k^i, k=0..n-1. - Gary W. Adamson, Nov 11 2001
From Gary W. Adamson, Aug 09 2008: (Start)
Julius Worpitzky's 1883 algorithm generates Bernoulli numbers.
By way of example [Wikipedia]:
B0 = 1;
B1 = 1/1 - 1/2;
B2 = 1/1 - 3/2 + 2/3;
B3 = 1/1 - 7/2 + 12/3 - 6/4;
B4 = 1/1 - 15/2 + 50/3 - 60/4 + 24/5;
B5 = 1/1 - 31/2 + 180/3 - 390/4 + 360/5 - 120/6;
B6 = 1/1 - 63/2 + 602/3 - 2100/4 + 3360/5 - 2520/6 + 720/7;
...
Note that in this algorithm, odd n's for the Bernoulli numbers sum to 0, not 1, and the sum for B1 = 1/2 = (1/1 - 1/2). B3 = 0 = (1 - 7/2 + 13/3 - 6/4) = 0. The summation for B4 = -1/30. (End)
Pursuant to Worpitzky's algorithm and given M = A028246 as an infinite lower triangular matrix, M * [1/1, -1/2, 1/3, ...] (i.e., the Harmonic series with alternate signs) = the Bernoulli numbers starting [1/1, 1/2, 1/6, ...]. - Gary W. Adamson, Mar 22 2012
From Tom Copeland, Oct 23 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1 x + (2 + t)*x^2/2! + (6 + 6t + t^2)*x^3/3! + ... gives row polynomials for A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2 / 2! + (1 + 4t + t^2)*x^3 / 3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1+ t) x + (1 + 3t + 2 t^2) x^2 / 2! + ... gives row polynomials for the present triangle. (End)
The Worpitzky triangle seems to be an apt name for this triangle. - Johannes W. Meijer, Jun 18 2009
If Pascal's triangle is written as a lower triangular matrix and multiplied by A028246 written as an upper triangular matrix, the product is a matrix where the (i,j)-th term is (i+1)^j. For example,
1,0,0,0 1,1,1, 1 1,1, 1, 1
1,1,0,0 * 0,1,3, 7 = 1,2, 4, 8
1,2,1,0 0,0,2,12 1,3, 9,27
1,3,3,1 0,0,0, 6 1,4,16,64
So, numbering all three matrices' rows and columns starting at 0, the (i,j) term of the product is (i+1)^j. - Jack A. Cohen (ProfCohen(AT)comcast.net), Aug 03 2010
The Fi1 and Fi2 triangle sums are both given by sequence A000670. For the definition of these triangle sums see A180662. The mirror image of the Worpitzky triangle is A130850. - Johannes W. Meijer, Apr 20 2011
Let S_n(m) = 1^m + 2^m + ... + n^m. Then, for n >= 0, we have the following representation of S_n(m) as a linear combination of the binomial coefficients:
S_n(m) = Sum_{i=1..n+1} a(i+n*(n+1)/2)*C(m,i). E.g., S_2(m) = a(4)*C(m,1) + a(5)*C(m,2) + a(6)*C(m,3) = C(m,1) + 3*C(m,2) + 2*C(m,3). - Vladimir Shevelev, Dec 21 2011
Given the set X = [1..n] and 1 <= k <= n, then a(n,k) is the number of sets T of size k of subset S of X such that S is either empty or else contains 1 and another element of X and such that any two elemements of T are either comparable or disjoint. - Michael Somos, Apr 20 2013
Working with the row and column indexing starting at -1, a(n,k) gives the number of k-dimensional faces in the first barycentric subdivision of the standard n-dimensional simplex (apply Brenti and Welker, Lemma 2.1). For example, the barycentric subdivision of the 2-simplex (a triangle) has 1 empty face, 7 vertices, 12 edges and 6 triangular faces giving row 4 of this triangle as (1,7,12,6). Cf. A053440. - Peter Bala, Jul 14 2014
See A074909 and above g.f.s for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
An e.g.f. G(x,t) = exp[P(.,t)x] = 1/t - 1/[t+(1-t)(1-e^(-xt^2))] = (1-t) * x + (-2t + 3t^2 - t^3) * x^2/2! + (6t^2 - 12t^3 + 7t^4 - t^5) * x^3/3! + ... for the shifted, reverse, signed polynomials with the first element nulled, is generated by the infinitesimal generator g(u,t)d/du = [(1-u*t)(1-(1+u)t)]d/du, i.e., exp[x * g(u,t)d/du] u eval. at u=0 generates the polynomials. See A019538 and the G. Rzadkowski link below for connections to the Bernoulli and Eulerian numbers, a Ricatti differential equation, and a soliton solution to the KdV equation. The inverse in x of this e.g.f. is Ginv(x,t) = (-1/t^2)*log{[1-t(1+x)]/[(1-t)(1-tx)]} = [1/(1-t)]x + [(2t-t^2)/(1-t)^2]x^2/2 + [(3t^2-3t^3+t^4)/(1-t)^3]x^3/3 + [(4t^3-6t^4+4t^5-t^6)/(1-t)^4]x^4/4 + ... . The numerators are signed, shifted A135278 (reversed A074909), and the rational functions are the columns of A074909. Also, dG(x,t)/dx = g(G(x,t),t) (cf. A145271). (Analytic G(x,t) added, and Ginv corrected and expanded on Dec 28 2015.) - Tom Copeland, Nov 21 2014
The operator R = x + (1 + t) + t e^{-D} / [1 + t(1-e^(-D))] = x + (1+t) + t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... contains an e.g.f. of the reverse row polynomials of the present triangle, i.e., A123125 * A007318 (with row and column offset 1 and 1). Umbrally, R^n 1 = q_n(x;t) = (q.(0;t)+x)^n, with q_m(0;t) = (t+1)^(m+1) - t^(m+1), the row polynomials of A074909, and D = d/dx. In other words, R generates the Appell polynomials associated with the base sequence A074909. For example, R 1 = q_1(x;t) = (q.(0;t)+x) = q_1(0;t) + q__0(0;t)x = (1+2t) + x, and R^2 1 = q_2(x;t) = (q.(0;t)+x)^2 = q_2(0:t) + 2q_1(0;t)x + q_0(0;t)x^2 = 1+3t+3t^2 + 2(1+2t)x + x^2. Evaluating the polynomials at x=0 regenerates the base sequence. With a simple sign change in R, R generates the Appell polynomials associated with A248727. - Tom Copeland, Jan 23 2015
For a natural refinement of this array, see A263634. - Tom Copeland, Nov 06 2015
From Wolfdieter Lang, Mar 13 2017: (Start)
The e.g.f. E(n, x) for {S(n, m)}{m>=0} with S(n, m) = Sum{k=1..m} k^n, n >= 0, (with undefined sum put to 0) is exp(x)*R(n+1, x) with the exponential row polynomials R(n, x) = Sum_{k=1..n} a(n, k)*x^k/k!. E.g., e.g.f. for n = 2, A000330: exp(x)*(1*x/1!+3*x^2/2!+2*x^3/3!).
The o.g.f. G(n, x) for {S(n, m)}{m >=0} is then found by Laplace transform to be G(n, 1/p) = p*Sum{k=1..n} a(n+1, k)/(p-1)^(2+k).
Hence G(n, x) = x/(1 - x)^(n+2)*Sum_{k=1..n} A008292(n,k)*x^(k-1).
E.g., n=2: G(2, 1/p) = p*(1/(p-1)^2 + 3/(p-1)^3 + 2/(p-1)^4) = p^2*(1+p)/(p-1)^4; hence G(2, x) = x*(1+x)/(1-x)^4.
This works also backwards: from the o.g.f. to the e.g.f. of {S(n, m)}_{m>=0}. (End)
a(n,k) is the number of k-tuples of pairwise disjoint and nonempty subsets of a set of size n. - Dorian Guyot, May 21 2019
From Rajesh Kumar Mohapatra, Mar 16 2020: (Start)
a(n-1,k) is the number of chains of length k in a partially ordered set formed from subsets of an n-element set ordered by inclusion such that the first term of the chains is either the empty set or an n-element set.
Also, a(n-1,k) is the number of distinct k-level rooted fuzzy subsets of an n-set ordered by set inclusion. (End)
The relations on p. 34 of Hasan (also p. 17 of Franco and Hasan) agree with the relation between A019538 and this entry given in the formula section. - Tom Copeland, May 14 2020
T(n,k) is the size of the Green's L-classes in the D-classes of rank (k-1) in the semigroup of partial transformations on an (n-1)-set. - Geoffrey Critzer, Jan 09 2023
T(n,k) is the number of strongly connected binary relations on [n] that have period k (A367948) and index 1. See Theorem 5.4.25(6) in Ki Hang Kim reference. - Geoffrey Critzer, Dec 07 2023

Examples

			The triangle a(n, k) starts:
n\k 1   2    3     4      5      6      7      8     9
1:  1
2:  1   1
3:  1   3    2
4:  1   7   12     6
5:  1  15   50    60     24
6:  1  31  180   390    360    120
7:  1  63  602  2100   3360   2520    720
8:  1 127 1932 10206  25200  31920  20160   5040
9:  1 255 6050 46620 166824 317520 332640 181440 40320
... [Reformatted by _Wolfdieter Lang_, Mar 26 2015]
-----------------------------------------------------
Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}.
From _Vladimir Shevelev_, Dec 22 2011: (Start)
Also, for power sums, we have
S_0(n) = C(n,1);
S_1(n) = C(n,1) +    C(n,2);
S_2(n) = C(n,1) +  3*C(n,2) +  2*C(n,3);
S_3(n) = C(n,1) +  7*C(n,2) + 12*C(n,3) +  6*C(n,4);
S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc.
(End)
For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013
		

References

  • Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York and Basel (1982).

Crossrefs

Dropping the column of 1's gives A053440.
Without the k in the denominator (in the definition), we get A019538. See also the Stirling number triangle A008277.
Row sums give A000629(n-1) for n >= 1.
Cf. A027642, A002445. - Gary W. Adamson, Aug 09 2008
Appears in A161739 (RSEG2 triangle), A161742 and A161743. - Johannes W. Meijer, Jun 18 2009
Binomial transform is A038719. Cf. A131689.
Cf. A119879.
From Rajesh Kumar Mohapatra, Mar 29 2020: (Start)
A000007(n-1) (column k=1), A000225(n-1) (column k=2), A028243(n-1) (column k=3), A028244(n-1) (column k=4), A028245(n-1) (column k=5), for n > 0.
Diagonal gives A000142(n-1), for n >=1.
Next-to-last diagonal gives A001710,
Third, fourth, fifth, sixth, seventh external diagonal respectively give A005460, A005461, A005462, A005463, A005464. (End)

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))); # G. C. Greubel, May 30 2019
    
  • Magma
    [[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 30 2019
    
  • Maple
    a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k;
    seq(print(seq(a(n,k),k=1..n)),n=1..10);
    T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n):
    seq(print(seq(T(n,k),k=0..n)),n=0..9); # Peter Luschny, Jul 12 2013
  • Mathematica
    a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, May 02 2011 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* Michael Somos, Oct 02 2002 */
    
  • PARI
    {T(n,k) = stirling(n,k,2)*(k-1)!}; \\ G. C. Greubel, May 31 2019
    
  • Python
    # Assuming offset (n, k) = (0, 0).
    def T(n, k):
        if k >  n: return 0
        if k == 0: return 1
        return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k)
    for n in range(9):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Apr 26 2022
  • Sage
    def A163626_row(n) :
        x = polygen(ZZ,'x')
        A = []
        for m in range(0, n, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return list(A[0])
    for i in (1..7) : print(A163626_row(i))  # Peter Luschny, Jan 25 2012
    
  • Sage
    [[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 30 2019
    

Formula

E.g.f.: -log(1-y*(exp(x)-1)). - Vladeta Jovovic, Sep 28 2003
a(n, k) = S2(n, k)*(k-1)! where S2(n, k) is a Stirling number of the second kind (cf. A008277). Also a(n,k) = T(n,k)/k, where T(n, k) = A019538.
Essentially same triangle as triangle [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938, but the notation is different.
Sum of terms in n-th row = A000629(n) - Gary W. Adamson, May 30 2005
The row generating polynomials P(n, t) are given by P(1, t)=t, P(n+1, t) = t(t+1)(d/dt)P(n, t) for n >= 1 (see the Riskin and Beckwith reference). - Emeric Deutsch, Aug 09 2005
From Gottfried Helms, Jul 12 2006: (Start)
Delta-matrix as can be read from H. Hasse's proof of a connection between the zeta-function and Bernoulli numbers (see link below).
Let P = lower triangular matrix with entries P[row,col] = binomial(row,col).
Let J = unit matrix with alternating signs J[r,r]=(-1)^r.
Let N(m) = column matrix with N(m)(r) = (r+1)^m, N(1)--> natural numbers.
Let V = Vandermonde matrix with V[r,c] = (r+1)^c.
V is then also N(0)||N(1)||N(2)||N(3)... (indices r,c always beginning at 0).
Then Delta = P*J * V and B' = N(-1)' * Delta, where B is the column matrix of Bernoulli numbers and ' means transpose, or for the single k-th Bernoulli number B_k with the appropriate column of Delta,
B_k = N(-1)' * Delta[ *,k ] = N(-1)' * P*J * N(k).
Using a single column instead of V and assuming infinite dimension, H. Hasse showed that in x = N(-1) * P*J * N(s), where s can be any complex number and s*zeta(1-s) = x.
His theorem reads: s*zeta(1-s) = Sum_{n>=0..inf} (n+1)^-1*delta(n,s), where delta(n,s) = Sum_{j=0..n} (-1)^j * binomial(n,j) * (j+1)^s.
(End)
a(n,k) = k*a(n-1,k) + (k-1)*a(n-1,k-1) with a(n,1) = 1 and a(n,n) = (n-1)!. - Johannes W. Meijer, Jun 18 2009
Rephrasing the Meijer recurrence above: Let M be the (n+1)X(n+1) bidiagonal matrix with M(r,r) = M(r,r+1) = r, r >= 1, in the two diagonals and the rest zeros. The row a(n+1,.) of the triangle is row 1 of M^n. - Gary W. Adamson, Jun 24 2011
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f.. A(x,t) = G[(t+1)x,-1/(t+1)]-1 (from 2008 comment) = -1 + 1/[1-(1+t)(1-e^(-x))] = (1+t)x + (1+3t+2t^2)x^2/2! + ..., the comp. inverse in x is
B(x,t)= -log(t/(1+t)+1/((1+t)(1+x))) = (1/(1+t))x - ((1+2t)/(1+t)^2)x^2/2 + ((1+3t+3t^2)/(1+t)^3)x^3/3 + .... The numerators are the row polynomials of A074909, and the rational functions are (omitting the initial constants) signed columns of the re-indexed Pascal triangle A007318.
Let h(x,t)= 1/(dB/dx) = (1+x)(1+t(1+x)), then the row polynomial P(n,t) = (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(1,t)=1+t. (Series added Dec 29 2015.)(End)
Let denote the Eulerian numbers A173018(n,k), then T(n,k) = Sum_{j=0..n} *binomial(n-j,n-k). - Peter Luschny, Jul 12 2013
Matrix product A007318 * A131689. The n-th row polynomial R(n,x) = Sum_{k >= 1} k^(n-1)*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf A038719. R(n,-1/2) = (-1)^(n-1)*(2^n - 1)*Bernoulli(n)/n. - Peter Bala, Jul 14 2014
a(n,k) = A141618(n,k) / C(n,k-1). - Tom Copeland, Oct 25 2014
For the row polynomials, A028246(n,x) = A019538(n-1,x) * (1+x). - Tom Copeland, Dec 28 2015
n-th row polynomial R(n,x) = (1+x) o (1+x) o ... o (1+x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E11 in the Bala link. - Peter Bala, Jan 12 2018
From Dorian Guyot, May 21 2019: (Start)
Sum_{i=0..k} binomial(k,i) * a(n,i) = (k+1)^n.
Sum_{k=0..n} a(n,k) = 2*A000670(n).
(End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry, A028246, are given by x^n * A_n(1 + 1/x;0). Other specializations of A_n(x;y) give A046802, A090582, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020
The row generating polynomials R(n,x) = Sum_{i=1..n} a(n,i) * x^i satisfy the recurrence equation R(n+1,x) = R(n,x) + Sum_{k=0..n-1} binomial(n-1,k) * R(k+1,x) * R(n-k,x) for n >= 1 with initial value R(1,x) = x. - Werner Schulte, Jun 17 2021

Extensions

Definition corrected by Li Guo, Dec 16 2006
Typo in link corrected by Johannes W. Meijer, Oct 17 2009
Error in title corrected by Johannes W. Meijer, Sep 24 2010
Edited by M. F. Hasler, Oct 29 2014

A122803 Powers of -2: a(n) = (-2)^n.

Original entry on oeis.org

1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648, 4294967296, -8589934592, 17179869184
Offset: 0

Author

Keywords

Comments

The number -2 can be used as a base of numeration (see the Weisstein link). - Alonso del Arte, Mar 30 2014
Contribution from M. F. Hasler, Oct 21 2014: (Start)
This is the inverse binomial transform of A033999 = n->(-1)^n, and the binomial transform of A033999*A000244 = n->(-3)^n, see also A141413.
Prefixed with one 0, i.e., (0,1,-2,4,...) = -A033999*A131577, it is the binomial transform of (0, 1, -4, 13, -40, 121,...) = -A033999*A003462, and inverse binomial transform of (0,1,0,1,0,1,...) = A000035.
Prefixed with two 0's, i.e., (0,0,1,-2,4,-8,...), it is the binomial transform of (0,0,1,-5,18,-58,179,-543,...) (cf. A000340) and inverse binomial transform of (0,0,1,1,2,2,3,3,...) = A004526. (End)
Prefixed with three 0's, this is the inverse binomial difference of (0, 0, 0, 1, 2, 4, 6, 9, 12, 16,...) = concat(0, A002620), which has as successive differences (0, 0, 1, 1, 2, 2,...) = A004526, then (0, 1, 0, 1,...) = A000035, then (1, -1, 1, -1,...) = A033999, and then (-2)^k*A033999 with k=1,2,3,... - Paul Curtz, Oct 16 2014, edited by M. F. Hasler, Oct 21 2014
Stirling-Bernoulli transform of triangular numbers: 1, 3, 6, 10, 15, 21, 28, ... - Philippe Deléham, May 25 2015

Crossrefs

Programs

Formula

a(n) = (-2)^n = (-1)^n * 2^n.
a(n) = -2*a(n-1), n > 0; a(0) = 1. G.f.: 1/(1+2x). - Philippe Deléham, Nov 19 2008
Sum_{n >= 0} 1/a(n) = 2/3. - Jaume Oliver Lafont, Mar 01 2009
E.g.f.: 1/exp(2*x). - Arkadiusz Wesolowski, Aug 13 2012
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A030195(n+1). - R. J. Mathar, Oct 15 2012
G.f.: 1/(1+2x). A122803 = A033999 * A000079. - M. F. Hasler, Oct 21 2014
a(n) = Sum_{k = 0..n} A163626(n,k)*A000217(k+1). - Philippe Deléham, May 25 2015

A028243 a(n) = 3^(n-1) - 2^n + 1 (essentially Stirling numbers of second kind).

Original entry on oeis.org

0, 0, 2, 12, 50, 180, 602, 1932, 6050, 18660, 57002, 173052, 523250, 1577940, 4750202, 14283372, 42915650, 128878020, 386896202, 1161212892, 3484687250, 10456158900, 31372671002, 94126401612, 282395982050, 847221500580, 2541731610602, 7625329049532
Offset: 1

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

For n >= 3, a(n) is equal to the number of functions f: {1,2,...,n-1} -> {1,2,3} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 02 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is not a subset of y and y is not a subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x and x and y are disjoint. Then a(n+2) = |R|. - Ross La Haye, Mar 19 2009
In the terdragon curve, a(n) is the number of triple-visited points in expansion level n. The first differences of this sequence (A056182) are the number of enclosed unit triangles since on segment expansion each unit triangle forms a new triple-visited point, and existing triple-visited points are unchanged. - Kevin Ryde, Oct 20 2020
a(n+1) is the number of ternary strings of length n that contain at least one 0 and one 1; for example, for n=3, a(4)=12 since the strings are the 3 permutations of 100, the 3 permutations of 110, and the 6 permutations of 210. - Enrique Navarrete, Aug 13 2021
From Sanjay Ramassamy, Dec 23 2021: (Start)
a(n+1) is the number of topological configurations of n points and n lines where the points lie at the vertices of a convex cyclic n-gon and the lines are the perpendicular bisectors of its sides.
a(n+1) is the number of 2n-tuples composed of n 0's and n 1's which have an interlacing signature. The signature of a 2n-tuple (v_1,...,v_{2n}) is the n-tuple (s_1,...,s_n) defined by s_i=v_i+v_{i+n}. The signature is called interlacing if after deleting the 1's, there are letters remaining and the remaining 0's and 2's are alternating. (End)
a(n+1) is the number of pairs (A,B) where B is a nonempty subset of {1,2,...,n} and A is a nonempty proper subset of B. If either "nonempty" or "proper" is omitted then see A001047. If "nonempty" and "proper" are omitted then see A000244. - Manfred Boergens, Mar 28 2023
a(n) is the number of (n-1) X (n-1) nilpotent Boolean relation matrices with rank equal to 1. a(n) = A060867(n-1) - A005061(n-1) (since every rank 1 matrix is either idempotent or nilpotent). - Geoffrey Critzer, Jul 13 2023
For odd n > 3, a(n) is also the number of minimum vertex colorings in the (n-1)-prism graph. - Eric W. Weisstein, Mar 05 2024

Crossrefs

Cf. A000392, A008277, A163626, A056182 (first differences), A000244, A001047.

Programs

  • Magma
    [3^(n-1) - 2*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
    
  • Mathematica
    Table[2 StirlingS2[n, 3], {n, 24}] (* or *)
    Table[3^(n - 1) - 2*2^(n - 1) + 1, {n, 24}] (* or *)
    Rest@ CoefficientList[Series[-2 x^3/(-1 + x)/(-1 + 3 x)/(-1 + 2 x), {x, 0, 24}], x] (* Michael De Vlieger, Sep 24 2016 *)
  • PARI
    a(n) = 3^(n-1) - 2*2^(n-1) + 1 \\ G. C. Greubel, Nov 19 2017
  • Sage
    [stirling_number2(i,3)*2 for i in range(1,30)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = 2*S(n, 3) = 2*A000392(n). - Emeric Deutsch, May 02 2004
G.f.: -2*x^3/(-1+x)/(-1+3*x)/(-1+2*x) = -1/3 - (1/3)/(-1+3*x) + 1/(-1+2*x) - 1/(-1+x). - R. J. Mathar, Nov 22 2007
E.g.f.: (exp(3*x) - 3*exp(2*x) + 3*exp(x) - 1)/3. - Wolfdieter Lang, May 03 2017
E.g.f. with offset 0: exp(x)*(exp(x)-1)^2. - Enrique Navarrete, Aug 13 2021
a(n) = Sum_{k = 1..n-2} binomial(n-1, k) * (2^(n-k-1)-1). - Ocean Wong, Jan 03 2025

A145901 Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n.

Original entry on oeis.org

1, 1, 2, 1, 8, 8, 1, 26, 72, 48, 1, 80, 464, 768, 384, 1, 242, 2640, 8160, 9600, 3840, 1, 728, 14168, 72960, 151680, 138240, 46080, 1, 2186, 73752, 595728, 1948800, 3037440, 2257920, 645120, 1, 6560, 377504, 4612608, 22305024, 52899840
Offset: 0

Author

Peter Bala, Oct 26 2008

Keywords

Comments

The Coxeter group of type B_n may be realized as the group of n X n matrices with exactly one nonzero entry in each row and column, that entry being either +1 or -1. The order of the group is 2^n*n!. The orbit of the point (1,2,...,n) (or any sufficiently generic point (x_1,...,x_n)) under the action of this group is a set of 2^n*n! distinct points whose convex hull is defined to be the permutohedron of type B_n. The rows of this table are the f-vectors of the simplicial complexes dual to these type B permutohedra. Some examples are given in the Example section below. See A060187 for the corresponding table of h-vectors of type B permutohedra.
This is the (unsigned) triangle of connection constants between the polynomial sequences (2*x + 1)^n, n >= 0, and binomial(x+k,k), k >= 0. For example, (2*x + 1)^2 = 8*binomial(x+2,2) - 8*binomial(x+1,1) + 1 and (2*x + 1)^3 = 48*binomial(x+3,3) - 72*binomial(x+2,2) + 26*binomial(x+1,1) - 1. Cf. A163626. - Peter Bala, Jun 06 2019

Examples

			The triangle begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1
1..|..1.....2
2..|..1.....8.....8
3..|..1....26....72....48
4..|..1....80...464...768...384
5..|..1...242..2640..8160..9600..3840
...
Row 2: the permutohedron of type B_2 is an octagon with 8 vertices and 8 edges. Its dual, also an octagon, has f-vector (1,8,8) - row 3 of this triangle.
Row 3: for an appropriate choice of generic point in R_3, the permutohedron of type B_3 is realized as the great rhombicuboctahedron, also known as the truncated cuboctahedron, with 48 vertices, 72 edges and 26 faces (12 squares, 8 regular hexagons and 6 regular octagons). See the Wikipedia entry and also [Fomin and Reading p.22]. Its dual polyhedron is a simplicial polyhedron, the disdyakis dodecahedron, with 26 vertices, 72 edges and 48 triangular faces and so its f-vector is (1,26,72,48) - row 4 of this triangle.
From _Peter Bala_, Jun 06 2019: (Start)
Examples of falling factorials identities for odd numbered rows: Let (x)_n = x*(x - 1)*...*(x - n + 1) with (x)_0 = 1 denote the falling factorial power.
Row 1: 2*(x)_1 + (0 - 2*x)_1 = 0.
Row 3: 48*(x)_3 + 72*(x)_2 * (2 - 2*x)_1 + 26*(x)_1 * (2 - 2*x)_2 + (2 - 2*x)_3 = 0
Row 5: 3840*(x)_5 + 9600*(x)_4 * (4 - 2*x)_(1) + 8160*(x)_3 * (4 - 2*x)_2 + 2640*(x)_2 * (4 - 2*x)_3 + 242*(x)_1 * (4 - 2*x)_4 + (4 - 2*x)_5 = 0. (End)
		

Crossrefs

Cf. A019538 (f-vectors type A permutohedra), A060187 (h-vectors type B permutohedra), A080253 (row sums), A145905, A062715, A028246.

Programs

  • Maple
    with(combinat):
    T:= (n,k) -> add((-1)^(k-i)*binomial(k,i)*(2*i+1)^n,i = 0..k):
    for n from 0 to 9 do
    seq(T(n,k),k = 0..n);
    end do;
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*(2*i + 1)^n, {i, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 02 2019 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(2*i+1)^n.
Recurrence relation: T(n,k) = (2*k + 1)*T(n-1,k) + 2*k*T(n-1,k-1) with T(0,0) = 1 and T(0,k) = 0 for k >= 1.
Relation with type B Stirling numbers of the second kind: T(n,k) = 2^k*k!*A039755(n,k).
Row sums A080253. The matrix product A060187 * A007318 produces the mirror image of this triangle.
E.g.f.: exp(t)/(1 + x - x* exp(2*t)) = 1 + (1 + 2*x)*t + (1 + 8*x + 8*x^2 )*t^2/2! + ... .
From Peter Bala, Oct 13 2011: (Start)
The polynomials in the first column of the array ((1+t)*P^(-1)-t*P)^(-1), P Pascal's triangle and I the identity, are the row polynomials of this table.
The polynomials in the first column of the array ((1+t)*I-t*A062715)^(-1) are, apart from the initial 1, the row polynomials of this table with an extra factor of t. Cf. A060187. (End)
From Peter Bala, Jul 18 2013: (Start)
Integrating the above e.g.f. with respect to x from x = 0 to x = 1 gives Sum_{k = 0..n} (-1)^k*T(n,k)/(k + 1) = 2^n*Bernoulli(n,1/2), the n-th cosecant number.
The corresponding Type A result is considered in A028246 as Worpitzky's algorithm.
Also for n >= 0, Sum_{k = 0..2*n} (-1)^k*T(2*n,k)/((k + 1)*(k + 2)) = 1/2*2^(2*n)*Bernoulli(2*n,1/2) and for n >= 1, Sum_{k = 0..2*n-1} (-1)^k*T(2*n - 1,k)/((k + 1)*(k + 2)) = -1/2 * 2^(2*n)* Bernoulli(2*n,1/2).
The nonzero cosecant numbers are given by A001896/A001897. (End)
From Peter Bala, Jul 22 2014: (Start)
The row polynomials R(n,x) satisfy the recurrence equation R(n+1,x) = D(R(n,x)) with R(0,x) = 1, where D is the operator 1 + 2*x + 2*x(1 + x)*d/dx.
R(n,x) = 1/(1 + x)* Sum_{k = 0..inf} (2*k + 1)^n*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf. A019538.
The shifted row polynomial x*R(n,x) = (1 + x)^n*P(n,x/(1 + x)) where P(n,x) denotes the n-th row polynomial of A060187.
The row polynomials R(n,x) have only real zeros.
Symmetry: R(n,x) = (-1)^n*R(n,-1 - x). Consequently the zeros of R(n,x) lie in the open interval (-1, 0). (End)
From Peter Bala, May 28 2015: (Start)
Recurrence for row polynomials: R(n,x) = 1 + x*Sum_{k = 0..n-1} binomial(n,k)2^(n-k)*R(k,x) with R(0,x) = 1.
For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(k,z))) )^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). A(k,z) = A(-(k + 1),-z). Cf. A019538.
For cases see A258377 (k = 1), A258378(k = 2), A258379 (k = 3), A258380 (k = 4) and A258381 (k = 5). (End)
T(n,k) = A154537(n,k)*k! = A039755(n,k)*(2^k*k!), 0 <= k <= n. - Wolfdieter Lang, Apr 19 2017
From Peter Bala, Jan 12 2018: (Start)
n-th row polynomial R(n,x) = (1 + 2*x) o (1 + 2*x) o ... o (1 + 2*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E13 in the Bala link.
R(n,x) = Sum_{k = 0..n} binomial(n,k)*2^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)

A028244 a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).

Original entry on oeis.org

0, 0, 0, 6, 60, 390, 2100, 10206, 46620, 204630, 874500, 3669006, 15195180, 62350470, 254135700, 1030793406, 4166023740, 16792841910, 67558001700, 271392695406, 1089054420300, 4366671742950, 17498055448500, 70086339807006
Offset: 1

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

For n>=4, a(n) is equal to the number of functions f: {1,2,...,n-1}->{1,2,3,4} such that Im(f) contains 3 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 27 2007

Crossrefs

Programs

  • Magma
    [4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
    
  • Mathematica
    Table[4^(n - 1) - 3*3^(n - 1) + 3*2^(n - 1) - 1, {n, 1, 30}] (* Stefan Steinerberger, Apr 13 2006 *)
    Table[6*StirlingS2[n,4], {n,1,30}] (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for(n=1,30, print1(6*stirling(n,4,2), ", ")) \\ G. C. Greubel, Nov 19 2017

Formula

a(n) = 6*S(n, 4) = 6*A000453(n). - Emeric Deutsch, May 02 2004
G.f.: 6x^4/((1-x)(1-2x)(1-3x)(1-4x)). - R. J. Mathar, Oct 23 2008
E.g.f.: (exp(4*x) - 4*exp(3*x) + 6*exp(2*x) - 4*exp(x) + 1)/4, with a(0) = 0. - Wolfdieter Lang, May 03 2017
a(n) = 2*A032263(n). - Alois P. Heinz, Jan 24 2018
Showing 1-10 of 33 results. Next