cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Richard V. Scholtz, III

Richard V. Scholtz, III's wiki page.

Richard V. Scholtz, III has authored 7 sequences.

A228910 a(n) = 8^n - 7*7^n + 21*6^n - 35*5^n + 35*4^n - 21*3^n + 7*2^n - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 181440, 3780000, 59875200, 801496080, 9574044480, 105398092800, 1091804313600, 10794490827120, 102896614941120, 952741767650400, 8617145057539200, 76461500619902160, 667855517349303360, 5757691363157764800, 49099453300298016000, 414884142077935345200
Offset: 0

Author

Keywords

Comments

Calculates the eighth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].

Crossrefs

The eighth column of results of A163626.

Programs

  • Magma
    [8^(n)-7*7^(n)+21*6^(n)-35*5^(n)+35*4^(n)-21*3^(n)+7*2^(n)-1: n in [0..30]]; // G. C. Greubel, Nov 19 2017
  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[ Derivative[n][y][x], y[x]] // Rest; Join[{0, 0, 0, 0, 0, 0, 0}, Table[ -row[n], {n, 7, 23}] [[All, 8]]] (* Jean-François Alcover, Dec 16 2014 *)
    Table[7!*StirlingS2[n + 1, 8], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[8^n - 7*7^n + 21*6^n - 35*5^n + 35*4^n - 21*3^n + 7*2^n - 1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    CoefficientList[Series[5040*x^7 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
  • PARI
    a(n)=8^(n)-7*7^(n)+21*6^(n)-35*5^(n)+35*4^(n)-21*3^(n)+7*2^(n)-1.
    
  • PARI
    for(n=0,30, print1(5040*stirling(n+1,8,2), ", ")) \\ G. C. Greubel, Nov 19 2017
    

Formula

a(n) = 5040 * S2(n+1,8), n>=0.
G.f.: 5040*x^7 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..8} (-1)^(8-k)*binomial(8-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Vaclav Kotesovec, Dec 16 2014

A228909 a(n) = 7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 20160, 332640, 4233600, 46070640, 451725120, 4115105280, 35517081600, 294293759760, 2362955474880, 18509835445920, 142172988048000, 1074905737084080, 8023358912869440, 59263889194762560, 433988913576556800, 3155502239364459600, 22807773973299268800
Offset: 0

Author

Keywords

Comments

Essentially Stirling Numbers of the Second Kind, with an offset index, and multiplied by 720.
Calculates the seventh column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].

Crossrefs

Represents the seventh column of results of A163626.

Programs

  • Magma
    [7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1: n in [0..30]]; // G. C. Greubel, Nov 19 2017
  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[ Derivative[n][y][x], y[x]] // Rest; Join[{0, 0, 0, 0, 0, 0}, Table[row[n], {n, 6, 23}] [[All, 7]]] (* Jean-François Alcover, Dec 16 2014 *)
    Table[7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[6!*StirlingS2[n + 1, 7], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
  • PARI
    a(n)=7^(n)-6*6^(n)+15*5^(n)-20*4^(n)+15*3^(n)-6*2^(n)+1
    
  • PARI
    concat([0,0,0,0,0,0], Vec(-720*x^6/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
    

Formula

a(n) = 720 * S(n+1,7), n>=0.
G.f.: -720*x^6 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). - Colin Barker, Dec 16 2014
E.g.f.: Sum_{k=1..7} (-1)^(7-k)*binomial(7-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Jean-François Alcover, Dec 16 2014
a(20) corrected by Jean-François Alcover, Dec 16 2014
Formula adapted for new offset by Vaclav Kotesovec, Dec 16 2014

A228913 a(n) = 11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 239500800, 8821612800, 239740300800, 5368729766400, 105006251750400, 1858166876966400, 30449278610150400, 469614684719980800, 6897777008118796800, 97349279409046828800, 1329165939158093836800, 17651395149921751680000
Offset: 0

Author

Keywords

Comments

Calculates the eleventh column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].

Crossrefs

Eleventh column of results of A163626.
Cf. A228910 (with more cf.s), A228911, A228912.

Programs

  • Mathematica
    Table[10!*StirlingS2[n+1, 11], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    CoefficientList[Series[-3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    LinearRecurrence[{66,-1925,32670,-357423,2637558,-13339535,45995730,-105258076,150917976,-120543840,39916800},{0,0,0,0,0,0,0,0,0,0,3628800},30] (* Harvey P. Dale, Mar 20 2017 *)
  • PARI
    a(n)=11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1

Formula

G.f.: -3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..11} (-1)^(11-k)*binomial(11-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Vaclav Kotesovec, Dec 16 2014

A228912 a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 19958400, 618710400, 14270256000, 273158645760, 4595022432000, 70309810771200, 1000944296352000, 13467262000832640, 173201547619900800, 2147373231974006400, 25832386565857872000, 303056981918271947520, 3481253462769108364800
Offset: 0

Author

Keywords

Comments

Calculates the tenth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y = 1/[1+exp(-x)].

Crossrefs

Tenth column of results of A163626.
Essentially 362880*A049435.
Cf. A228910 (with more crossrefs), A228911.

Programs

  • Mathematica
    Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
    CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
  • PARI
    a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1

Formula

G.f.: 362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..10} (-1)^(10-k)*binomial(10-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Vaclav Kotesovec, Dec 16 2014

A228911 a(n) = 9^n - 8*8^n + 28*7^n - 56*6^n + 70*5^n - 56*4^n + 28*3^n - 8*2^n + 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 40320, 1814400, 46569600, 898128000, 14495120640, 207048441600, 2706620716800, 33094020960000, 384202115256960, 4280991956841600, 46150861752777600, 484294916235312000, 4970346251077025280, 50075960398487654400, 496745174491651008000
Offset: 0

Author

Keywords

Comments

Calculates the ninth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].
Essentially 40320 * A049447. - Joerg Arndt, Sep 24 2016

Crossrefs

The ninth column of results of A163626.
Cf. A228910 (also for more crossrefs).

Programs

  • Magma
    [9^n-8*8^n+28*7^n-56*6^n+70*5^n-56*4^n+28*3^n-8*2^n+1: n in [0..32]]; // Vincenzo Librandi, Oct 11 2017
  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[ Derivative[n][y][x], y[x]] // Rest; Join[{0, 0, 0, 0, 0, 0, 0, 0}, Table[row[n], {n, 8, 22}] [[All, 9]]] (* Jean-François Alcover, Dec 16 2014 *)
    Table[8!*StirlingS2[n + 1, 9], {n, 0, 22}] (* Vaclav Kotesovec, Dec 16 2014 *)
    Table[9^n-8*8^n+28*7^n-56*6^n+70*5^n-56*4^n+28*3^n-8*2^n+1, {n, 0, 22}] (* Vaclav Kotesovec, Dec 16 2014 *)
    CoefficientList[Series[-40320*x^8/ ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
    lst={}; Do[f= 40320 StirlingS2[n, 9];  AppendTo[lst, f], {n, 1, 5!}]; lst (* Vincenzo Librandi, Oct 11 2017 *)
  • PARI
    a(n)=9^n-8*8^n+28*7^n-56*6^n+70*5^n-56*4^n+28*3^n-8*2^n+1
    

Formula

G.f.: -40320*x^8/ ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..9} (-1)^(9-k)*binomial(9-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017

Extensions

Offset corrected by Vaclav Kotesovec, Dec 16 2014

A163626 Triangle read by rows: The n-th derivative of the logistic function written in terms of y, where y = 1/(1 + exp(-x)).

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -7, 12, -6, 1, -15, 50, -60, 24, 1, -31, 180, -390, 360, -120, 1, -63, 602, -2100, 3360, -2520, 720, 1, -127, 1932, -10206, 25200, -31920, 20160, -5040, 1, -255, 6050, -46620, 166824, -317520, 332640, -181440, 40320, 1, -511, 18660
Offset: 0

Author

Keywords

Comments

Apart from signs and offset, same as A028246. - Joerg Arndt, Nov 06 2016
Triangle T(n,k), read by rows, given by (1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...) DELTA (-1,-1,-2,-2,-3,-3,-4,-4,-5,-5,-6,-6,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2011
The "Stirling-Bernoulli transform" maps a sequence b_0, b_1, b_2, ... to a sequence c_0, c_1, c_2, ..., where if B has o.g.f. B(x), c has e.g.f. exp(x)*B(1 - exp(x)). More explicity, c_n = Sum_{k = 0..n} A163626(n,k)*b_k. - Philippe Deléham, May 26 2015
Row sums of absolute values of terms give A000629. - Yahia DJEMMADA, Aug 16 2016
This is the triangle of connection constants for expressing the monomial polynomials (-x)^n as a linear combination of the basis polynomials {binomial(x+n,n)}n>=0, that is, (-x)^n = Sum_{k = 0..n} T(n,k)*binomial(x+k,k). Cf. A145901. - Peter Bala, Jun 06 2019
Row sums for n > 0 are zero. - Shel Kaphan, May 14 2024
The Akiyama-Tanigawa algorithm applied to a sequence yields the same result as the Stirling-Bernoulli Transform applied to the same sequence. See Philippe Deléham's comment of May 26 2015. - Shel Kaphan, May 16 2024

Examples

			y = 1/(1+exp(-x))
y^(0) = y
y^(1) = y-y^2
y^(2) = y-3*y^2+2*y^3
y^(3) = y-7*y^2+12*y^3-6*y^4
Triangle begins :
n\k 0     1     2     3     4     5    6
----------------------------------------
0:  1
1:  1    -1
2:  1    -3     2
3:  1    -7    12    -6
4:  1   -15    50   -60    24
5:  1   -31   180  -390   360  -120
6:  1   -63   602 -2100  3360 -2520  720
7:  1  -127 ... - Reformatted by _Philippe Deléham_, May 26 2015
Change of basis constants: x^4 = 1 - 15*binomial(x+1,1) + 50*binomial(x+2,2) - 60*binomial(x+3,3) + 24*binomial(x+4,4). - _Peter Bala_, Jun 06 2019
		

Programs

  • Maple
    A163626 := (n, k) -> add((-1)^j*binomial(k, j)*(j+1)^n, j = 0..k):
    for n from 0 to 6 do seq(A163626(n, k), k = 0..n) od; # Peter Luschny, Sep 21 2017
  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1-y[x]);
    Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n-1][y][x], x];
    row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest;
    Table[row[n], {n, 0, 9}] // Flatten
    (* or *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Dec 16 2014 *)
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def T(n, k):return 1 if n==0 and k==0 else 0 if k>n or k<0 else (k + 1)*T(n - 1, k) - k*T(n - 1, k - 1)
    for n in range(51): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Sep 11 2017

Formula

T(n, k) = (-1)^k*k!*Stirling2(n+1, k+1). - Jean-François Alcover, Dec 16 2014
T(n, k) = (k+1)*T(n-1,k) - k*T(n-1,k-1), T(0,0) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, May 29 2015
Worpitzky's representation of the Bernoulli numbers B(n, 1) = Sum_{k = 0..n} T(n,k)/(k+1) = A164555(n)/A027642(n) (Bernoulli numbers). - Philippe Deléham, May 29 2015
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(k, j)*(j+1)^n. - Peter Luschny, Sep 21 2017
Let W_n(x) be the row polynomials of this sequence and F_n(x) the row polynomials of A278075. Then W_n(1 - x) = F_n(x). Also Integral_{x=0..1} U_n(x) = Bernoulli(n, 1) for U in {W, F}. - Peter Luschny, Aug 10 2021

A145448 a(n) = 12^n*n!.

Original entry on oeis.org

1, 12, 288, 10368, 497664, 29859840, 2149908480, 180592312320, 17336861982720, 1872381094133760, 224685731296051200, 29658516531078758400, 4270826380475341209600, 666248915354153228697600
Offset: 0

Author

Keywords

Comments

12-factorial numbers.
Let G(z) = Gamma(z)/(sqrt(2*Pi)*z^(z-1/2)*exp(-z)). For any z > 0 the bounds 1 < G(z) < exp(1/(12*z)) = 1 + 1/(12*z) + 1/(288*z^2) + 1/(10368*z^3) + ... hold. G. Nemes improved the upper bound to 1 + 1/(12*z) + 1/(288*z^2) which gives a simple estimate for the Gamma function on the positive real line. - Peter Luschny, Sep 24 2016

Crossrefs

Programs

  • Magma
    [(Factorial(n)*12^n): n in [0..20]]; // Vincenzo Librandi, Oct 28 2011
    
  • Mathematica
    Table[12^n*n!, {n,0,30}] (* G. C. Greubel, Mar 24 2022 *)
  • Sage
    [12^n*factorial(n) for n in (0..30)] # G. C. Greubel, Mar 24 2022

Formula

E.g.f.: 1/(1-12*x). - Philippe Deléham, Oct 28 2011
G.f.: 1/(1 - 12*x/(1 - 12*x/(1 - 24*x/(1 - 24*x/(1 - 36*x/(1 - 36*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, Aug 09 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/12).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/12). (End)

Extensions

a(0)=1 prepended by Richard V. Scholtz, III, Mar 11 2009
a(10)-a(13) corrected by Vincenzo Librandi, Oct 28 2011